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Abstract. We propose several functional encryption schemes for set
intersection and variants on two or multiple sets. In these schemes,
a party may learn the set intersection from the sets of two or more
clients, without having to learn the plaintext set of each individual
client. For the case of two clients, we construct efficient schemes for
determining the set intersection and the cardinality of the intersection.
To evaluate the cardinality of the intersection, no overhead is incurred
when compared to operating on plaintext data. We also present other
functionalities with a scheme for set intersection with data transfer
and a threshold scheme that only discloses the intersection if both
clients have at least t elements in common. Finally, we consider set
intersection and set intersection cardinality schemes for the case of
three or more clients from a theoretical perspective. Our proof-of-
concept implementations show that the two-client constructions are
efficient and scale linearly in the set sizes.

Keywords: multi-client functional encryption · non-interactive · set
intersection

1 Introduction

In a functional encryption (fe) scheme, decryption keys are associated with a
functionality f and the decryption of an encrypted messagem returns the function
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applied to the message, f(m), instead of the original message m. This concept
can be extended to functions with more than one input, resulting in a multi-input
functional encryption (mi-fe) scheme. Correspondingly, the decryption algorithm
of an mi-fe scheme requires a decryption key, associated with an n-ary function f ,
and n encrypted values x1, . . . , xn to output f(x1, . . . , xn).

A strict subset of these mi-fe schemes are termed multi-client functional
encryption (mc-fe) schemes [GGG+14]. In such an mc-fe scheme, the inputs
for the n-ary function f are given by n distinct parties, termed clients. Each
client encrypts their input using their own encryption key and a time-step or
session identifier. This identifier is used to determine which ciphertexts from the
various clients belong together. To evaluate a function f using the corresponding
decryption key, all inputted ciphertexts need to be associated with the same
identifier or otherwise decryption will fail.

In this work, we explore the set intersection functionality and several variants.
Inspired by the popularity of private set intersection (psi) protocols [PSZ14],
we define a scheme for determining the set intersection of two clients’ sets in a
non-interactive manner. Additionally, we propose several other non-interactive
variants of interactive psi protocols that were previously proposed in literature.
We construct a two-client functional encryption (2c-fe) scheme for determining
the cardinality of the intersection (i.e., |Sa ∩ Sb|, where Sγ is the set belonging
to client γ), similar to psi cardinality [KS05]. We also consider a non-interactive
2c-fe version of the less common psi with data transfer [DT10; JL10], where the
common set elements are shared with associated data (i.e., { (xj , ϕa(xj), ϕb(xj)) |
xj ∈ Sa ∩ Sb }, where ϕγ(xj) is the data associated with xj by client γ). Finally,
we construct a threshold scheme where the set intersection is only revealed if two
clients have at least t set elements in common.

Following our 2c-fe schemes, we also explore the much harder multi-client
case where we propose mc-fe schemes for determining the (cardinality of the) set
intersection of more than two sets. While 2c-fe schemes could also be used to
determine the intersection of multiple sets, doing so would leak information about
the intersection of each pair of sets. To prevent this undesirable leakage and
achieve secure mc-fe for set intersection, we require more involved constructions.

An overview of constructions for mc-fe for set intersection presented in this
work is given in Table 1.

Although the functionalities for our mc-fe schemes are inspired by various
psi protocols, the usage scenario differs in a crucial way: We apply our mc-fe
schemes in a scenario where a third party, termed the evaluator, learns the
function outcome. In Section 5.1 we explain why non-interactive 2c-fe cannot
be secure if one of the clients also serves as the evaluator. We highlight the
difference between psi and our mc-fe for set intersection in Figure 1.

Using the functionalities provided by our constructions, it is possible to achieve
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Table 1: Overview of the presented mc-fe schemes for set operations.

functionality two-client multi-client
set intersection § 6.2 § 7.3

set intersection cardinality § 6.1 §§ 7.1, 7.2
set intersection with data transfer § 6.3 open problem

threshold set intersection § 6.4 open problem

P1 P2

S1
f(S1,S2)

S2
f(S1,S2)

exchange of messages

to compute f(S1,S2)

(a) A typical scenario of private set in-
tersection (psi). Both parties learn the
output of the function evaluation, but not
each other’s inputs.

evaluator

C1 C2 Cn· · ·

S1 S2 Sn

f(S1, . . . ,Sn)

Encrypt(uski, ID,Si)

(b) Our scenario of mc-fe for set inter-
section. The evaluator learns the func-
tion evaluation and nothing else about
the clients’ inputs.

Figure 1: Fundamental difference between a private set intersection (psi) protocol
and our multi-client functional encryption (mc-fe) schemes for set intersection.

privacy-preserving profiling. For example, consider a case where the police is
looking for suspects which were both present at a concert and recently received a
large sum of money on their bank account. Using a 2c-fe scheme for determining
the set intersection, the police will only learn about the suspects matching the two
profiles, while learning nothing about the other visitors of the concert or other
people that received an unusual amount of money. Another use case is privacy-
preserving data mining, such as the computation of various set similarity scores.
For example, by determining the cardinality of a set intersection we can compute
the Jaccard index (i.e., |S1 ∩ S2|/|S1 ∪ S2| = |S1 ∩ S2|/(|S1|+ |S2| − |S1 ∩ S2|)),
without requiring the evaluator to learn the clients’ sets themselves.

To asses the practicability of our constructions, we implemented several of our
proposed schemes. Our 2c-fe constructions are quite efficient: Determining the
cardinality of the set intersection of two encrypted sets is as fast as any plaintext
solution and determining the set intersection of sets of 100 thousand elements in
size can be done in just under a second.
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2 Preliminaries

A t-out-of-n Shamir’s secret sharing scheme (ssss) uses a t-degree polynomial f
over a finite field Fp. To share the secret s, pick a random polynomial with f(0) =
s and pick shares

(
i, f(i)

)
for distinct values i. To recover the secret from a

set of at least t distinct shares
{(
i, f(i)

)}
i∈S , Lagrange interpolation is used,

f(0) =
∑
i∈S f(i) ·∆S,i,where ∆S,i =

∏
j∈S,j 6=i

(
j · (j − i)−1).

A Bloom filter is a data structure that can be used for efficient set membership
testing. An (m, k) Bloom filter consists of a bit string bs of length m (indexed
using bs[`] for 1 ≤ ` ≤ m) and is associated with k independent hash functions,
hi : {0, 1}∗ → {1, . . . ,m} for 1 ≤ i ≤ k. The Bloom filter is initialized with the
bit string of all zeros. To add an element x to the Bloom filter, we hash the
element for each of the k hash functions to obtain hi(x) and set the hi(x)th
position in the bit string bs to 1, i.e., bs[hi(x)] = 1 for 1 ≤ i ≤ k. To test the
membership of an element x∗, we simply check if hi(x∗) = 1 for 1 ≤ i ≤ k.

Note that Bloom filters have no false negatives for membership testing, but
may have false positives. Furthermore, we point out that the hash functions hi
do not necessary need to be cryptographic hash functions.

3 Related Work

While the term mc-fe [GGG+14] only recently gained traction, a couple of mc-fe
schemes have already been proposed several years ago. For example, for the
functionality of summing inputs from distinct clients, Shi et al. [SCR+11] proposed
a construction. Around the same time, Lewko and Waters [LW11] proposed a
multi-authority attribute-based encryption scheme. Their construction can also
be seen as mc-fe since the evaluated function only outputs a plaintext if the
user has the right inputs (i.e., attributes) to the function (i.e., policy). More
recently, mc-fe constructions for computing vector equality [KPE+17] and inner
products [CDG+18; ABK+19] have been proposed. However, no mc-fe schemes
for functionalities related to set operations have been proposed.

Despite being interactive by definition, psi protocols are functionality-wise
the closest related to our constructions. While the concept of psi dates from the
mid-80s [Mea86], renewed interest in psi protocols started in the beginning of
the new millennium [FNP04; KS05]. A comprehensive overview of various psi
constructions and techniques is given by Pinkas, Schneider, and Zohner [PSZ14].
While most psi constructions achieve their functionality through techniques
different from ours, Bloom filters have been used by interactive psi protocols
before [Ker12b; DCW13].

The type of psi protocols that are most related to our mc-fe schemes are
termed outsourced psi [Ker12a; Ker12b; KMR+14; LNZ+14; ZX15; ATD15;
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ATD16]. In outsourced psi, a client may upload its encrypted set to a service
provider, which will then engage in a psi protocol on the client’s behalf. Hence,
in outsourced psi the other client still learns the outcome of the evaluated set
intersection, while in our definition of mc-fe for set intersection we require a
dedicated evaluator to learn this outcome. This difference is typified by the
difference in homomorphic encryption and fe: While both techniques allow us
to compute over encrypted data, with homomorphic encryption we learn the
encrypted output of the computation while with fe we learn the plaintext result.
The two-client set intersection protocol by Kerschbaum [Ker12a] is a notable
exception to regular outsourced psi: In that construction the service provider also
learns the outcome of the set intersection. However, besides their limited scope
of considering only two-client set intersection, they consider a weaker security
notion. Their construction is only collusion resistant if the two clients collude
against the evaluator, not if the evaluator colludes with one client against the
other client (something we show impossible in Section 5.1). As a consequence,
their construction cannot be extended to a secure scheme in the multi-client case.
Moreover, their proposed construction is malleable and thus does not provide
any form of integrity.

4 Multi-client Functional Encryption for Set Operations

An mc-fe [GGG+14] scheme for a specific set operation consists of n parties,
termed clients. Each of these clients encrypts their own set. Another party,
which we term evaluator, having a decryption key and receiving these encrypted
sets, can evaluate an n-ary set operation f over the clients’ inputs.

To run the same functionality f multiple times without the possibility for the
evaluator to mix old clients’ inputs with newly received inputs, mc-fe schemes
associate an identifier ID with every ciphertext. An evaluator is only able to
evaluate the function if all ciphertexts use the same identifier ID.

The mc-fe schemes we propose support only a single functionality f (e.g.,
set intersection). Therefore, our schemes do not need to define a key generation
algorithm to create a decryption key for each of the functionalities. Instead, we
can suffice with the creation of a decryption key for the single functionality in
Setup. This type of fe schemes is commonly referred to as single key [KLM+18].
However, to avoid confusion in our multi-client case—where we still have a key
for each client—we refer to this setting as single evaluation key mc-fe.
Definition 1 (Multi-client Functional Encryption for Set Operations). A single
evaluation key mc-fe scheme for set operation f , consists of the following three
polynomial time algorithms.
Setup(1λ, n) → (pp, esk, usk1, . . . , uskn). On input of the security parameter λ
and the number of clients, the algorithm outputs the public parameters pp,
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the evaluator’s evaluation key esk, and the clients’ secret keys uski for each
client 1 ≤ i ≤ n. The public parameters are implicitly used in the other
algorithms.

Encrypt(uski, ID,Si)→ ctID,i. For a client i to encrypt a set Si for identifier ID,
the client uses its secret key uski and outputs the ciphertext ctID,i.

Eval(esk, ctID,1, . . . , ctID,n)→ f(S1, . . . ,Sn). An evaluator having the evaluation
key esk and a ciphertext for identifier ID from every client, outputs the function
evaluation f(S1, . . . ,Sn).

4.1 Schemes Without an Evaluator Key

While having schemes with an evaluation secret key might be desirable in some
cases, in other cases it is desirable that anyone may learn the outcome of the
function, e.g., similar to property-revealing encryption [PR12; BLR+15]. However,
observe that we can always adapt an mc-fe scheme without an evaluation key
to the above defined single evaluation key mc-fe by using public key encryption.
Indeed, instead of sending the ciphertexts resulting from the mc-fe scheme
directly to the evaluator, we simply require the clients to encrypt these ciphertexts
again, but now using the public key of the evaluator. This ensures that only the
evaluator with the corresponding private key (used as an evaluation key) can
evaluate the functionality f . An alternative solution is to require the clients to
send their ciphertexts over a secure channel to the evaluator. This way, no other
party has access to the ciphertexts.

We conclude that, since schemes without an evaluation key can be turned
into a single evaluation key mc-fe scheme, mc-fe schemes without an evaluation
key are at least as powerful as single evaluation key mc-fe. For this reason,
we construct only mc-fe schemes without an evaluation key and stress that our
resulting schemes can thus be used both with and without an evaluation key.

5 Security

We use the indistinguishability-based security notion from Goldwasser et al.
[GGG+14, § 3.2] for mc-fe. In this notion, the adversary’s goal is to decide which
of the two, by the adversary chosen, plaintexts is encrypted. The notion allows
the adversary to adaptively query for the encryption of plaintext, while it can
locally evaluate the received ciphertext using Eval(ct1, . . . , ctn). Additionally, the
adversary is allowed to statically corrupt the clients by announcing the corrupted
clients before it receives the public parameters.

The adversary can thus be seen as a malicious evaluator that tries to learn
information about the ciphertexts, other than what it should be allowed according
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to the functionality of the scheme. In its attempts, the malicious evaluator may
collude with the clients in an effort to learn more about other clients’ ciphertexts.

Let f be the supported function of the mc-fe scheme for n clients. This
function has n inputs, one for every client. For a subset I ⊆ {1, . . . , n}, we use
the notation f({xi}i∈I , ·) to denote the function that has its inputs xi, for i ∈ I,
hardwired in the function.

Definition 2 (Adaptive IND-security of mc-fe [GGG+14]). An mc-fe scheme
without an evaluation key is secure if any probabilistic polynomial time (p.p.t.)
adversary A has at most a negligible advantage in winning the following game.
Corruptions The adversary sends a set of uncorrupted and corrupted clients to
the challenger, I and Ī, respectively.
Setup The challenger B picks a bit b R← {0, 1}, and sends the public parameters pp
along with the user keys of the corrupted clients {uski}i∈Ī to the adversary A.
Query 1 The adversary may query the challenger for the encryption of sets Si
for uncorrupted clients i ∈ I associated with an ID that has not been used
before. For each uncorrupted client i ∈ I, the challenger returns the encrypted
set ctID,i ← Encrypt(uski, ID,Si).
Challenge The adversary sends two equally sized sets S∗i,0, S∗i,1, |S∗i,0| = |S∗i,1|,
for every uncorrupted client i ∈ I together with an ID∗ that has not been
used before. The challenger checks if the challenge is allowed by checking
if f({S∗i,0}i∈I , ·) = f({S∗i,1}i∈I , ·). If this is not the case the challenger aborts the
game. Otherwise, it returns the encrypted sets Encrypt(uski, ID∗,S∗i,b) for every
uncorrupted client i ∈ I.
Query 2 Identical to Query 1.
Guess The adversary outputs its guess b′ for the challenger’s bit b.

Note that by definition, the ciphertext does not need to hide the set size.
This is similar to the semantic security notion where the ciphertext does not
need to hide the plaintext size. If this is undesirable, fixed-sized sets can easily
be obtained by adding dummy elements to each set.

5.1 Corruptions in Two-Client Functional Encryption

We observe that any single evaluation key 2c-fe scheme can never be secure
against corruptions for non-trivial functionalities. To see why this is the case,
consider a 2c-fe scheme for the functionality f(x, y). Assume, without loss of
generality, that the adversary corrupts the client which determines the input y. By
definition of the game for adaptive IND-security of mc-fe, the adversary submits
two values x0 and x1 to the challenger. For the challenge inputs to be allowed, it is
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required that f(x0, ·) = f(x1, ·), i.e., we require fx0(y) = fx1(y) for all possible y.
So, unless f is a constant function in y, we have to require that x0 = x1, for
which it is trivial to see that the challenge will be indistinguishable.

Generalizing the result, we see that in an mc-fe scheme for n clients, at least
two clients need to remain uncorrupted. Phrased differently, this means that for
mc-fe with n clients, we can allow for at most n− 2 corruptions.

6 Two-Client Constructions for Set Intersections

We propose several 2c-fe schemes for various set operations: computing the
cardinality of the set intersection, computing the set intersection itself, computing
the set intersection with data transfer or projection, and computing the set
intersection only if a threshold is reached. We discuss constructions supporting
more than two clients in Section 7.

6.1 Two-Client Set Intersection Cardinality

To compute the cardinality of a set intersection from two clients, we can suffice
with a simple scheme using a pseudorandom function (prf) (e.g., see [Sma16,
§ 11.2]). The two clients encrypt each set element individually using a prf under
the same key. Since a prf has a deterministic output, the evaluator can now use
any algorithm for determining the cardinality of the intersection, even algorithms
that only operate on plaintext data (e.g., see [DK11] for an overview).
Setup(1λ) → (pp, usk1, usk2). Let Φ = {φκ} be a prf ensemble for func-
tions φκ : ID × {0, 1}∗ → {0, 1}≥λ. Pick a prf φmsk. The public parameters
are pp = (Φ) and the clients’ keys usk1 = usk2 = (φmsk).
Encrypt(uski, ID,Si) → ctID,i. For a client i to encrypt its set Si for an identi-
fier ID ∈ ID, the client computes the prf for each set element xj ∈ Si. It outputs
the set ctID,i = {φmsk(ID, xj) | xj ∈ Si }.
Eval(ctID,1, ctID,2)→ |S1 ∩S2|. To evaluate the cardinality of the set intersection,
output |ctID,1 ∩ ctID,2|.

We can use a block cipher, keyed-hash function, hash-based message authen-
tication code, or a similar function as the prf.

Theorem 1. The two-client set intersection cardinality scheme defined above
is secure under the assumption that the prf is indistinguishable from a random
function.

Proof. This directly follows from the security of the prf. Note that the evaluator
only learns whether two set elements x1,j ∈ S1 and x2,j′ ∈ S2 equal or not.
Nothing else is revealed about the set elements x1,j and x2,j′ .
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6.2 Two-Client Set Intersection

In case of two-client set intersection, we need not only to determine whether two
encrypted set elements are the same, but also learn the plaintext set element if
they are the same. We achieve this by adapting our construction for two-client set
intersection cardinality with a combination of convergent encryption [DAB+02]
(cf. message-locked encryption [BKR13]) and secret sharing: We encrypt the
set element under a key derived from the message itself and secret share the
encryption key. If both clients encrypted the same message, the decryption key
can be recovered from the secret shares and the ciphertext can be decrypted.
To encrypt the set element itself, we use an authenticated encryption (ae)
scheme [BN00].

Setup(1λ) → (pp, usk1, usk2). Let 〈g〉 = G be a group of prime order p and
let Φ = {φκ} be a prf ensemble for functions φκ : ID × {0, 1}∗ → G and ae an
ae scheme. Define a mapping from the group to the key space of the ae scheme,
H : G→ Kae. Pick a prf φmsk and pick σ1

R← Zp to set σ2 = 1−σ1 (mod p). The
public parameters are pp = (G,Φ, H,ae) and the clients’ keys usk1 = (φmsk, σ1)
and usk2 = (φmsk, σ2).

Encrypt(uski, ID,Si) → ctID,i. For a client i to encrypt its set Si for an identi-
fier ID ∈ ID, the client computes the prf for each set element xj ∈ Si. It outputs
the set of tuples {(ctID,i,j,1, ctID,i,j,2)}1≤j≤|Si|,

ctID,i =
{ (
k σiID,j ,ae.EncH(kID,j)(xj)

)
| kID,j = φmsk(ID, xj), xj ∈ Si

}
.

Eval(ctID,1, ctID,2)→ S1 ∩ S2. For all ctID,1,j,2 = ctID,2,k,2 (and hence x = x1,j =
x2,k), determine

kID,x = ctID,1,j,1 · ctID,2,k,1

= φmsk(ID, x)σ1 · φmsk(ID, x)σ2 = φmsk(ID, x)σ1+σ2 = φmsk(ID, x),

to decrypt ctID,i,j,2 using ae.DecH(kID,x)(ctID,i,j,2) for i = 1 or, equivalently, i = 2.

Theorem 2. The two-client set intersection scheme defined above is secure under
the decisional Diffie–Hellman (ddh) assumption, a secure prf, and a secure ae
scheme.

Proof. We construct an algorithm that is able to break the ddh problem if a
p.p.t. adversary A has a non-negligible advantage in winning the game.

Setup The challenger B receives the ddh tuple (g, ga, gb, T ) from the group G
of prime order p. It defines a prf ensemble Φ = {φκ} and mapping H : G→ Kae
according to the scheme. The public parameters pp = (G,Φ, H,ae) are sent to
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the adversary. The challenger indirectly sets σ1 = a and σ2 = 1−a, i.e., gσ1 = ga

and gσ2 = g · (ga)−1.

Query Upon receiving an allowed encryption query for (i, ID,S), the challenger
encrypts the elements of the set S as follows. It models the prf as follows: On
input (ID, xj), output grID,xj , where, if the input has not been queried before,
rID,xj

R← Zp. The challenger encrypts an element xj ∈ S as

ctID,i,j =
{(

(ga)rID,xj ,ae.Enck(xj)
)

if i = 1;(
(g · (ga)−1)rID,xj ,ae.Enck(xj)

)
if i = 2,

where k = H(grID,xj ).

It outputs the encrypted set ctID,i to the adversary.

Challenge An allowed challenge request from the adversary for the sets S∗1,0, S∗1,1,
S∗2,0, and S∗2,1 with identifier ID∗, is answered by the challenger by sending the
encrypted sets S∗1,b and S∗2,b back to the adversary. An element xj 6∈ (S1,b ∩ S2,b)
is encrypted as

ctID,i,j =
{(
T
rID∗,xj ,ae.Enck(xj)

)
if i = 1;(

(gb · T−1)rID∗,xj ,ae.Enck(xj)
)

if i = 2,
where k = H

(
(gb)rID,xj

)
.

Note that this indirectly sets the output of the prf to gbrID∗,xj for xj 6∈ (S1,b∩S2,b).
The elements xj ∈ (S1,b ∩ S2,b) are encrypted as in the query phase.

If the adversary A outputs a correct guess b′ = b, the challenger outputs the
guess that T = gab, otherwise, it outputs its guess T ∈R G.

6.3 Two-Client Set Intersection with Data Transfer or Projection

The two-client set intersection scheme described above can be extended into
a two-client set intersection scheme with data transfer (analogous to psi with
data transfer [DT10; JL10]). Instead of only encrypting the set element xj itself,
ctID,i,j,2 = ae.Enck(xj), we can also choose to encrypt both the element itself
and the data associated to the set element ρ(xj). The security of the scheme is
the same as before since we rely on the security of the ae scheme.

Moreover, the proposed scheme also allows for a two-client set intersection
projection scheme (analogous to psi with projection [CFS+17]). We construct such
a scheme by encrypting only the associated data ρ(xj), ctID,i,j,2 = ae.Enck(ρ(xj)),
not the set element xj itself. Security follows from the fact that the ae decryption
key k = H(φmsk(ID, xj)) does not reveal any information about the set element xj ,
assuming the security of the used prf. However, the evaluator does learn that
the projections of both clients correspond to the same set element.
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6.4 Two-Client Threshold Set Intersection

To allow the evaluator to learn the cardinality of the intersection, but only the
set elements in the intersection if the clients have at least t set elements in
common, we propose a two-client threshold set intersection scheme. We achieve
this by encrypting the share of the decryption key for the ae ciphertext k σiID,j

using another encryption key. This newly added encryption key can only be
obtained by the evaluator if the clients have at least t set elements in common.

Although the construction is based on the previous scheme, the precise
construction is quite technical. We therefore state the complete scheme below.
Setup(1λ, t) → (pp, usk1, usk2). Let ae an ae scheme and 〈g〉 = G be a group
and Fp be a field, both of prime order p. Let Φ = {φκ} and Ψ = {ψκ} be
prf ensembles for functions φκ : ID × {0, 1}∗ → G and ψκ : ID × {0, 1}∗ → Fp,
respectively. Define a mapping from the group to the key space of the ae scheme,
H : G → Kae. Pick three prfs φ ∈ Φ, ψ1, ψ2 ∈ Ψ and σ1

R← Zp, ρ1
R← Zp−1,

setting σ2 = 1− σ1 (mod p) and ρ2 = 1− ρ1 (mod p− 1).
The public parameters are pp = (G,Φ,Ψ, H,ae, t) and the clients’ keys usk1 =

(φ, ψ1, ψ2, σ1, ρ1) and usk2 = (φ, ψ1, ψ2, σ2, ρ2).
Encrypt(uski, ID,Si) → ctID,i. For a client i to encrypt its set Si for an identi-
fier ID ∈ ID, the client computes the prf for each set element xj ∈ Si. It defines
the (t− 1)th degree polynomial fID by setting the coefficients ci = ψ2(ID, i), for
0 ≤ i < t, to obtain the polynomial fID(x) = ct−1x

t−1 + · · ·+ c1x+ c0.
The client outputs the set

ctID,i =
{ (
kID,j,2, f(kID,j,2)ρi ,ae.EncH(c0)(k σiID,j,1),ae.EncH(kID,j,1)(xj)

)
| kID,j,1 = φ(ID, xj), kID,j,2 = ψ1(ID, xj), xj ∈ Si } .

Eval(ctID,1, ctID,2)→ (|S1∩S2|, {xj | xj ∈ S1∩S2, |S1∩S2| ≥ t }). The evaluation
algorithm consists of two stages; the second stage is only executed if |S1∩S2| ≥ t.

1. To determine the cardinality of the set intersection |S1 ∩ S2|, the evaluator
counts the number of times a value kID,j,2 occurs both in ctID,1 and ctID,2.

2. If |S1 ∩ S2| ≥ t, the evaluator uses Lagrange interpolation to compute the
value c0 = f(0). It can do so by taking t distinct tuples

(
kID,j,2, f(kID,j,2)

)
,

where f(kID,j,2) = f(kID,j,2)ρ1 · f(kID,j,2)ρ2 . Now, when the secret c0
has been recovered from the shares, the evaluator can use it to decrypt
the values ae.EncH(c0)(kσiID,j,1). So, the evaluator obtains kσiID,j,1 for ev-
ery set element in xj ∈ Si if |S1 ∩ S2| ≥ t. Observe that for the ele-
ments in the intersection, the evaluator has both kσ1

ID,j,1 and kσ2
ID,j,1, and

can compute kID,j,1 = kσ1
ID,j,1 · k

σ2
ID,j,1. Finally, using H(kID,j,1), it can de-

crypt ae.EncH(kID,j,1)(xj) to obtain xj ∈ S1 ∩ S2.
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Since the construction above builds upon the set intersection scheme, which
can be modified into a set intersection with data transfer scheme or a set
intersection with projection scheme, we similarly obtain both threshold set
intersection with data transfer and projection.

Theorem 3. The two-client threshold set intersection scheme defined above is
secure under the ddh assumption, a secure prf, and a secure ae scheme.

Proof. We only have to prove that the values kσiID,j,1 can only be obtained if |S1 ∩
S2| ≥ t, as the rest of the proof directly follows from Theorem 2. Since the
values kσiID,j,1 are encrypted using an ae scheme using the key H(c0), the values
are only know to the evaluator if it has the key H(c0) (under the assumption of
a secure ae scheme). The fact that c0 (and hence H(c0)) can only be obtained
from the secret shares follows from the information-theoretic security of ssss if a
random polynomial fID was used. Note that the (t− 1)th degree polynomial is
random under the assumption of a secure prf. Finally, using a similar argument
as in Theorem 2, we can show that, under the ddh assumption, f(kID,j,2)ρ1

or f(kID,j,2)ρ2 does not reveal any information about f(kID,j,2) if f(kID,j,2)ρ2 or
f(kID,j,2)ρ1 , respectively, is unknown.

7 Multi-client Constructions for Set Intersections

While the 2c-fe constructions from Section 6 could be used in a multi-client
case, this would leak information about each pair of sets. For the same reason,
deterministic encryption cannot be used in secure mc-fe constructions, which
makes it much harder to develop efficient mc-fe schemes.

7.1 Multi-client Set Intersection Cardinality

We construct an mc-fe scheme for testing the set intersection using only a
hash function and secret sharing. The proposed scheme incurs no additional
leakage and is proven adaptive IND-secure. While our scheme has an evaluation
algorithm which does not rely on heavy cryptographic machinery and runs in
polynomial time (for a fixed number of clients n), it is not very efficient. The
running time of the evaluation algorithm grows in the product of the cardinality
of the individual clients’ set size. However, for relatively small sets or a small
number of clients this scheme might still be efficient enough to use in practice.

Setup(1λ, n) → (pp, usk1, . . . , uskn). Let 〈g〉 = G be a group of prime order p
and let H : ID × {0, 1}∗ → G be a hash function. Create random shares of 0 by
picking σi R← Zp, for all 2 ≤ i ≤ n, and setting σ1 = −

∑n
i=2 σi (mod p). The

public parameters are pp = (H) and the clients’ keys uski = (σi).
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Encrypt(uski, ID,Si) → ctID,i. For a client i to encrypt its set Si using an
identifier ID ∈ ID, the client encrypts each set element xj ∈ Si individually. It
outputs the set ctID,i = {H(ID, xj)σi | xj ∈ Si } .

Eval(ctID,1, . . . , ctID,n) → |
⋂n
i=1 Si|. For each n-tuple (cID,1, . . . , cID,n) ∈ ctID,1 ×

· · · × ctID,n, the evaluator evaluates
∏n
i=1 cID,i

?= 1. The evaluator outputs the
count for the number of times the expression above evaluates to true.

We will prove the construction secure under selective corruptions, but we note
that it is also possible to achieve a proof under dynamic corruptions (although
less tight) by adapting the proofs from [SCR+11].

Theorem 4. The improved multi-client set intersection cardinality scheme de-
fined above is secure up to (n− 2) corruptions under the ddh assumption in the
random oracle model (rom).

Proof. Let A be a p.p.t. adversary playing the adaptive IND-security game
for mc-fe. We will show how to use A as a distinguisher for a ddh tuple,
winning with a non-negligible advantage if A has a non-negligible advantage in
winning the security game.

Random Oracle On input of a tuple (ID, xj) the oracle checks if it has answered
the query before. If not, it picks a value βID,xj

R← Zp. Next, the challenger B
guesses whether the query is for the challenge ID. If so, the oracle outputs (gb)βID,xj ,
otherwise, it outputs gβID,xj . If the guess turns out to be wrong later, B can
simply abort the game.

Corruptions The adversary A announces the set of uncorrupted and corrupted
clients, I and Ī, respectively.

Setup For i ∈ Ī, the challenger B picks σi R← Zp and sends the values to the
adversary A. Let i′ ∈ I, for i ∈ I \ {i′}, B indirectly sets σi = a · αi, where
αi

R← Zp, by setting gσi = (ga)αi . For i′, it indirectly sets σi′ = −
∑
i 6=i′ σi,

gσi′ =
∏
i∈Ī

g−σi ·
∏

i∈I,i6=i′
(ga)−αi .

Query To answer an encryption query Si for an uncorrupted client i ∈ I,
the challenger uses the oracle to obtain {βID,xj | xj ∈ Si } and construct the
ciphertext as ctID,i =

{
(gσi)βID,xj | xj ∈ Si

}
.

Challenge Upon receiving the challenge sets { (S∗i,0,S∗i,1) | i ∈ I } and an ID∗

from the adversary, the challenger picks b R← {0, 1}. The challenger returns the
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ciphertexts

ctID∗,i′ =
{∏
i∈Ī

(gb)−σi·βID∗,xj ·
∏

i∈I,i6=i′
T
−αi·βID∗,xj | xj ∈ S∗i,b

}
and

ctID∗,i =
{
T
αiβID∗,xj | xj ∈ S∗i,b

}
for i 6= i′.

Note that if T = gab, the ciphertext is distributed properly according the scheme.
If T ∈R G, the challenger returns a ciphertext of a randomly distributed set
element. So, the challenger B guesses that T = gab if A correctly guessed b′ = b
and otherwise, B guesses that T ∈R G.

We remark that while the security of the two-client schemes could be proven
in the standard model, our multi-client constructions can only be proven in
the rom. The difference in the constructions is that in the two-client case, no
corruptions are taken place, and thus we can use a programmable prf instead of
a programmable random oracle.

7.2 Efficient Multi-client Set Intersection Cardinality

A drawback of the multi-client set intersection cardinality scheme might be
that the computational complexity for the evaluator grows quickly in the total
number of set elements (i.e.,

∏n
i=1|Si|). To address this problem, we propose an

alternative scheme using Bloom filters. In this scheme, we first combine the Bloom
filter representation of every client’s set in the encrypted domain, resulting in an
encrypted Bloom filter representing the intersection of all clients’ sets. Next, the
evaluator uses the encrypted set elements of any client to determine the cardinality
of the intersection. This method used by the evaluator to determine the cardinality
of the intersection can be seen as computing |Si ∩ (

⋂n
i=1 Si)| = |

⋂n
i=1 Si|. The

theoretical efficiency of O(n+ minni=1|Si|) ciphertext operations is much better
than the other scheme. However, the proposed scheme is only secure if no
corruptions are taking place.
Setup(1λ, n,m, k) → (pp, usk1, . . . , uskn). Let 〈g〉 = G be a group of prime
order p and let BF be a specification for an (m, k) Bloom filter. Let Φ = {φκ} be a
prf ensemble for functions φκ : {0, 1}∗ → {0, 1}≥λ and let H : ID×{0, 1}∗ → G
be a hash function. Pick a prf φ ∈ Φ. Additionally, pick for 1 ≤ i ≤ n,
values ci R← Zp and define the n-degree polynomial f(x) = cnx

n + · · ·+ c1x over
the field Fp. The public parameters are pp = (BF,Φ, H) and the clients’ secret
keys are uski =

(
φ, f(i), f(n+ i)

)
for 1 ≤ i ≤ n. Note that every client receives

the same prf φ, but different secret shares f(i) and f(n+ i).
Encrypt(uski, ID,Si)→ (ctID,i,bsS , ctID,i,S). First, the client initializes the Bloom
filter to obtain bsS . Next, it adds its encrypted set elements {φ(xj) | xj ∈ Si } to
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the Bloom filter. For each 1 ≤ ` ≤ m, the client sets ri,` R← Zp, if bsS [`] = 0, and
ri,` = 0, otherwise. The client encrypts the Bloom filter for bsS as the ordered
set

ctbsS =
{
H(ID, `)f(i) · gri,` | 1 ≤ ` ≤ m

}
.

Additionally, the client initializes a new bit string bsj for every set element xj ∈ Si.
It encrypts each element xj and adds φ(xj) to the Bloom filter for bsj . Let tj
denote the Hamming weight (i.e., the number of 1s) of the resulting bit string bsj .
For the resulting bit string bsj pick ri,j,` R← Zp for 1 ≤ ` ≤ m. Additionally, set
ρi,j,`

R← Zp if bsj [`] = 0, and ρi,j,` = tj · ri,j,`, otherwise. It encrypts the Bloom
filter for bsj as

ctbsj =
({

H(ID, `)f(n+i) · gρi,j,` , gri,j,` | 1 ≤ ` ≤ m
})

.

Finally, the client outputs the ciphertext
(
ctbsS ,

{
ctbsj | xj ∈ Si

})
.

Eval(ctID,1, . . . , ctID,n)→ |
⋂n
i=1 Si|. Since the clients’ ciphertext are encryptions

of the individual set elements, we can determine a client with the smallest
(encrypted) set. Let γ be such a client. Now, for 1 ≤ ` ≤ m, compute the partial
Lagrange interpolation

a` =
n∏
i=1

(
ctID,i,bsS [`]

)∆{1,...,n,n+γ},i .

Set d = 0. Next, to determine if an encrypted set element xj ∈ Sγ (represented
by a tuple (ctID,γ,bsj , g

rγ,j,`) ∈ ctID,γ,S) is in the intersection of all sets, check for
each 1 ≤ ` ≤ m, if(

ctID,γ,bsj [`]
)∆{1,...,n,n+γ},n+γ · a`

?= (grγ,j,`)tj,`·∆{1,...,n,n+γ},n+γ

for values 1 ≤ tj,` ≤ k. If the value tj,` occurs tj,` times for the values 1 ≤ ` ≤ m,
increase the value d by one.

After all encrypted set element xj ∈ Sγ have been checked, output the
cardinality of the set intersection d.

Correctness To see that the above defined scheme is correct, observe that if
a set element xj ∈ Si is in the intersection of all clients’ sets, the values ri,j,`
equal 0 for the same values of ` in the encrypted Bloom filters ctID,i,bsS . Hence, by
using the Lagrange interpolation on these elements (corresponding to a`) together
with an encrypted Bloom filter for a single set element xj ∈ Sγ (corresponding
to ctID,γ,bsj ), we obtainH(ID, `)f(0) ·gri,j,`·∆{1,...,n,n+γ},n+γ = gri,j,`·∆{1,...,n,n+γ},n+γ .
Now, note that we set ρi,j,` = tj · ri,j,` if the bit string value bsj [`] = 1. So, if
exactly tj bit string values in the set intersection are set to 1, we know that the
element is a member of the set intersection.
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Theorem 5. The improved multi-client set intersection cardinality scheme de-
fined above is secure without corruptions under the ddh assumption in the rom.

Proof. We construct an algorithm that is able to break the ddh problem if a
p.p.t. adversary A has a non-negligible advantage in winning the game.

Random Oracle On input of a tuple (ID, `) the oracle checks if it has answered
the query before. If not, it picks a value βID,`

R← Zp. Next, the challenger B
guesses whether the query is for the challenge ID. If so, the oracle outputs (gb)βID,` ,
otherwise, it outputs gβID,` . If the guess turns out to be wrong later, B can simply
abort the game.

Setup The challenger B receives the ddh tuple (g, ga, gb, T ) from the group G
of prime order p. It defines a prf ensemble Φ = {φκ} and the Bloom filter BF
according to the scheme. Pick for 1 ≤ i ≤ n, values ci R← Zp and define the
n-degree polynomial f ′(x) = cnx

n + · · ·+ c1x over the field Fp. The challenger
uses f(x) = a · f ′(x) to indirectly define the secret shares. Note that this still
allows B to compute gf(x) = (ga)f ′(x) for all values of x.

Query To answer an encryption query Si for a client i, the challenger uses the
oracle to obtain {βID,` | xj ∈ Si } and construct the ciphertext as in the scheme,
but using H(ID, `)f(x) = (ga)βID,`f

′(x).

Challenge Upon receiving the challenge sets (S∗i,0,S∗i,1) for 1 ≤ i ≤ n and an ID∗

from the adversary, the challenger picks b R← {0, 1}. The challenger returns the
encryptions of the sets S∗i,b using the scheme’s encrypt algorithm, but replacing
H(ID∗, `)f(x) by T βID∗,`f

′(x). Note that if T = gab, the ciphertext is distributed
properly according the scheme. If T ∈R G, the challenger returns a ciphertext of
a randomly distributed set element. So, the challenger B guesses that T = gab

if A correctly guessed b′ = b and otherwise, B guesses that T ∈R G.

To construct efficient multi-client functional encryption schemes for set oper-
ations that resist corruptions, we need to be able to check the membership of an
encrypted set element against the encrypted intersection of the clients’ sets. The
above construction fails to be secure against corruptions as it (partially) reveals
the individual bits in the bit string of a Bloom filter for a set element, i.e., the
adversary learns (part of) the bit string representation of the set element.

7.3 Multi-client Set Intersection

The set intersection can be computed using a notion similar to non-interactive
distributed encryption (de) schemes [GH11; LHK14]. A de scheme is charac-
terized by two distinctive features. Firstly, we have that multiple clients can
encrypt a plaintext under their own secret key. Secondly, if enough clients have



Van de Kamp et al. 17

encrypted the same plaintext, anyone can recover this plaintext from the clients’
ciphertexts.

We construct an mc-fe scheme for set intersection from a de scheme.
Setup(1λ, n)→ (pp, usk1, . . . , uskn). Run de.Gen(1λ, n, n) to generate an n-out-
of-n de scheme defined by pp and obtain the encryption keys (usk1, . . . , uskn).
Encrypt(uski, ID,Si) → ctID,i. To encrypt the set Si, encrypt the identifier ID
together with each set element xj ∈ Si individually,

ctID,i = {de.Enc(uski, ID ‖ xj) | xj ∈ Si } ,

where ID has a fixed length (e.g., by applying padding). The algorithm’s output
is a random ordering of the set ctID,i.
Eval(ctID,1, . . . , ctID,n) →

⋂n
i=1 Si. For each n-tuple (cID,1, . . . , cID,n) ∈ ctID,1 ×

· · · × ctID,n, the evaluator uses de.Comb(cID,1, . . . , cID,n) to obtain either the
message ID ‖ xj or ⊥. If the message starts with the expected ID, it adds xj to
the initially empty set R.

After evaluating all tuples, the evaluator outputs the set R.

Theorem 6. The multi-client set intersection scheme defined above is secure
under the security of the de scheme.

Proof. For b ∈ {0, 1}, we consider for every set element xj,b ∈
⋃
i∈I S∗i,b two cases:

• if xj,b ∈
⋂
i∈I S∗i,b, xj,b is also contained in every client i’s set S∗i,1−b;

• if xj,b 6∈
⋂
i∈I S∗i,b, there is at least one set S∗k,1−b which does not contain xj,b,

but an element xj,1−b 6∈
⋂
i∈I S∗i,1−b (and hence xj,1−b 6∈

⋂
i∈I S∗i,b) instead.

For the elements xj satisfying the first case, the adversary does not learn
anything about b since for every client i we have that xj ∈ S∗i,b and xj ∈ S∗i,1−b,
while |S∗i,b| = |S∗i,1−b| (remember that the set elements are randomly ordered).

For the elements xj,b satisfying the second case, we claim that the adversary
does not learn anything about b by the security of the de scheme. To see this,
note that there exist at least two uncorrupted clients, with at least one client
which did not encrypt the plaintext ID∗ ‖ xj,b. Observe that the security of the
de scheme gives us that one cannot distinguish an encryption of a plaintext m0
from an encryption of a plaintext m1 as long as at most t − 1 uncorrupted
clients have encrypted the same plaintext. Combined with the fact that in
our scheme we have set t = n and the fact that we know that at least one
uncorrupted client did not encrypt the message ID∗ ‖ xj,b and also that at least
one uncorrupted client did not encrypt the message ID∗ ‖ xj,1−b, we know that
the encryption of the message ID∗ ‖ xj,b is indistinguishable from the encryption
of the message ID∗ ‖ xj,1−b.
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Figure 2: Evaluations for determining the cardinality (CA); set intersection (SI);
and cardinality (Th-CA) and set intersection (Th-SI) in the threshold scheme.

To improve efficiency, we can combine the above multi-client set intersection
scheme with the efficient multi-client set intersection cardinality scheme. The
construction for determining the cardinality can be used first to identify which
ciphertext elements correspond to set elements that are in the set intersection.
Next, we only have to use the evaluation algorithm of the multi-client set
intersection scheme on these elements from which we know that they belong to
the set intersection.

8 Evaluation

We created proof-of-concept implementations1 of the proposed 2c-fe schemes and
the two mc-fe schemes for determining the cardinality of the intersection. The
implementations are done in Python using the Charm library at a 128 bit security
level. The evaluations are done on a commodity laptop (i5-4210U@1.7GHz, 8GB
RAM) using only a single core. In Figure 2 we show the time it took to run Eval
on encrypted sets of varying sizes. Each client encrypted a set of the same size
and had 10% of their set in common with the other clients.

We see that the 2c-fe constructions can be evaluated in under a second,
even for sets of 100 thousand elements in size. A lower bound of the timings
is given by the 2c-fe cardinality scheme, CA, since it uses the same built-in
Python algorithm that is used on plaintext data. The mc-fe constructions are
polynomial in the set sizes. We evaluated the Bloom filter (BF) construction with
a worst-case false positive rate of 0.001. While it scales linear for fixed Bloom

1Available at https://github.com/CRIPTIM/nipsi.

https://github.com/CRIPTIM/nipsi
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filter sizes, the length of the bit strings have to increase linearly for larger sets,
resulting in quadratic efficiency of the Eval algorithm.

9 Conclusion

We initiated the study of non-interactive two-client functional encryption (2c-fe)
and multi-client functional encryption (mc-fe) schemes for set intersection. We
show that very efficient 2c-fe schemes can be constructed for set intersection and
related set operations. Additionally, the problem of constructing non-interactive
set intersection schemes for three or more clients is addressed by our mc-fe
schemes from a theoretical perspective. Finally, we show the practicability of the
proposed schemes using proof-of-concept implementations.
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in the context of the criptim project.

References

[ABK+19] Michel Abdalla, Fabrice Benhamouda, Markulf Kohlweiss, and Hendrik
Waldner. “Decentralizing Inner-Product Functional Encryption.” In: Public-
Key Cryptography (pkc). Ed. by Dongdai Lin and Kazue Sako. Vol. 11443.II.
LNCS. Springer International Publishing, 2019, pp. 128–157. doi: 10.1007/
978-3-030-17259-6_5.

[ATD15] Aydin Abadi, Sotirios Terzis, and Changyu Dong. “O-PSI: Delegated
Private Set Intersection on Outsourced Datasets.” In: ICT Systems Secu-
rity and Privacy Protection (sec). Ed. by Hannes Federrath and Dieter
Gollmann. Vol. 455. IFIPAICT. Springer International Publishing, 2015,
pp. 3–17. doi: 10.1007/978-3-319-18467-8_1.

[ATD16] Aydin Abadi, Sotirios Terzis, and Changyu Dong. “VD-PSI: Verifiable
Delegated Private Set Intersection on Outsourced Private Datasets.” In:
Financial Cryptography and Data Security (fc). Ed. by Jens Grossklags
and Bart Preneel. Vol. 9603. LNCS. Springer, 2016, pp. 149–168. doi:
10.1007/978-3-662-54970-4_9.

[BKR13] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. “Message-
Locked Encryption and Secure Deduplication.” In: eurocrypt. Ed. by
Thomas Johansson and Phong Q. Nguyen. Vol. 7881. LNCS. Springer,
2013, pp. 296–312. doi: 10.1007/978-3-642-38348-9_18.

https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-319-18467-8_1
https://doi.org/10.1007/978-3-662-54970-4_9
https://doi.org/10.1007/978-3-642-38348-9_18


20 Two-Client and Multi-client Functional Encryption for Set Intersection

[BLR+15] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry,
and Joe Zimmerman. “Semantically Secure Order-Revealing Encryption:
Multi-input Functional Encryption Without Obfuscation.” In: eurocrypt.
Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057.II. LNCS. Springer,
2015, pp. 563–594. doi: 10.1007/978-3-662-46803-6_19.

[BN00] Mihir Bellare and Chanathip Namprempre. “Authenticated Encryption: Re-
lations among Notions and Analysis of the Generic Composition Paradigm.”
In: asiacrypt. Ed. by Tatsuaki Okamoto. Vol. 1976. LNCS. Springer,
2000, pp. 531–545. doi: 10.1007/3-540-44448-3_41.

[CDG+18] Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan,
and David Pointcheval. “Decentralized Multi-Client Functional Encryption
for Inner Product.” In: asiacrypt. Ed. by Thomas Peyrin and Steven
Galbraith. Vol. 11273. LNCS. Springer International Publishing, 2018,
pp. 703–732. doi: 10.1007/978-3-030-03329-3_24.

[CFS+17] Xavier Carpent, Sky Faber, Tomas Sander, and Gene Tsudik. “Private
Set Projections & Variants.” In: Workshop on Privacy in the Electronic
Society (wpes). Ed. by Adam J. Lee. ACM, 2017, pp. 87–98. doi: 10.
1145/3139550.3139554.

[DAB+02] John R. Douceur, Atul Adya, William J. Bolosky, Dan Simon, and Marvin
Theimer. “Reclaiming space from duplicate files in a serverless distributed
file system.” In: International Conference on Distributed Computing Sys-
tems (icdcs). Ed. by Luis E. T. Rodrigues et al. IEEE, 2002, pp. 617–624.
doi: 10.1109/ICDCS.2002.1022312.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. “When Private Set Intersec-
tion Meets Big Data: An Efficient and Scalable Protocol.” In: Computer &
Communications Security (ccs). Ed. by Ahmad-Reza Sadeghi et al. ACM,
2013, pp. 789–800. doi: 10.1145/2508859.2516701.

[DK11] Bolin Ding and Arnd Christian König. “Fast Set Intersection in Memory.”
In: Proceedings of the VLDB Endowment (pvldb) 4.4 (Jan. 2011). Ed. by
H. V. Jagadish and Nick Koudas, pp. 255–266. doi: 10.14778/1938545.
1938550.

[DT10] Emiliano De Cristofaro and Gene Tsudik. “Practical Private Set Intersec-
tion Protocols with Linear Complexity.” In: Financial Cryptography and
Data Security (fc). Ed. by Radu Sion. Vol. 6052. LNCS. Springer, 2010,
pp. 143–159. doi: 10.1007/978-3-642-14577-3_13.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. “Efficient Private
Matching and Set Intersection.” In: eurocrypt. Ed. by Christian Cachin
and Jan L. Camenisch. Vol. 3027. LNCS. Springer, 2004, pp. 1–19. doi:
10.1007/978-3-540-24676-3_1.

https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1145/3139550.3139554
https://doi.org/10.1145/3139550.3139554
https://doi.org/10.1109/ICDCS.2002.1022312
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.14778/1938545.1938550
https://doi.org/10.14778/1938545.1938550
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-540-24676-3_1


Van de Kamp et al. 21

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan
Katz, Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. “Multi-
input Functional Encryption.” In: eurocrypt. Ed. by Phong Q. Nguyen
and Elisabeth Oswald. Vol. 8441. LNCS. Springer, 2014, pp. 578–602. doi:
10.1007/978-3-642-55220-5_32.

[GH11] David Galindo and Jaap-Henk Hoepman. “Non-interactive Distributed
Encryption: A New Primitive for Revocable Privacy.” In: Workshop on
Privacy in the Electronic Society (wpes). Ed. by Yan Chen and Jaideep
Vaidya. ACM, 2011, pp. 81–92. doi: 10.1145/2046556.2046567.

[JL10] Stanisław Jarecki and Xiaomin Liu. “Fast Secure Computation of Set
Intersection.” In: Security and Cryptography for Networks (scn). Ed. by
Juan A. Garay and Roberto De Prisco. Vol. 6280. LNCS. Springer, 2010,
pp. 418–435. doi: 10.1007/978-3-642-15317-4_26.

[Ker12a] Florian Kerschbaum. “Collusion-resistant Outsourcing of Private Set In-
tersection.” In: Symposium on Applied Computing (sac). Ed. by Sascha
Ossowski and Paola Lecca. ACM, 2012, pp. 1451–1456. doi: 10.1145/
2245276.2232008.

[Ker12b] Florian Kerschbaum. “Outsourced Private Set Intersection Using Homo-
morphic Encryption.” In: Information, Computer and Communications
Security (asiaccs). Ed. by Heung Youl Youm and Yoojae Won. ACM,
2012. doi: 10.1145/2414456.2414506.

[KLM+18] Sam Kim, Kevin Lewi, Avradip Mandal, Hart Montgomery, Arnab Roy,
and David J. Wu. “Function-Hiding Inner Product Encryption Is Prac-
tical.” In: Security and Cryptography for Networks (scn). Ed. by Dario
Catalano and Roberto De Prisco. Vol. 11035. LNCS. Springer International
Publishing, 2018, pp. 544–562. doi: 10.1007/978-3-319-98113-0_29.

[KMR+14] Seny Kamara, Payman Mohassel, Mariana Raykova, and Saeed Sadeghian.
“Scaling Private Set Intersection to Billion-Element Sets.” In: Financial
Cryptography and Data Security (fc). Ed. by Nicolas Christin and Reihaneh
Safavi-Naini. Vol. 8437. LNCS. Springer, 2014, pp. 195–215. doi: 10.1007/
978-3-662-45472-5_13.

[KPE+17] Tim R. van de Kamp, Andreas Peter, Maarten H. Everts, and Willem
Jonker. “Multi-client Predicate-Only Encryption for Conjunctive Equality
Tests.” In: Cryptology And Network Security (cans). Ed. by S. Capkun and
Sherman S. M. Chow. Vol. 11261. LNCS. Springer International Publishing,
2017, pp. 135–157. doi: 10.1007/978-3-030-02641-7_7.

[KS05] Lea Kissner and Dawn Song. “Privacy-Preserving Set Operations.” In:
crypto. Ed. by Victor Shoup. Vol. 3621. LNCS. Springer, 2005, pp. 241–
257. doi: 10.1007/11535218_15.

https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1145/2046556.2046567
https://doi.org/10.1007/978-3-642-15317-4_26
https://doi.org/10.1145/2245276.2232008
https://doi.org/10.1145/2245276.2232008
https://doi.org/10.1145/2414456.2414506
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-030-02641-7_7
https://doi.org/10.1007/11535218_15


22 Two-Client and Multi-client Functional Encryption for Set Intersection

[LHK14] Wouter Lueks, Jaap-Henk Hoepman, and Klaus Kursawe. “Forward-Secure
Distributed Encryption.” In: Privacy Enhancing Technologies Symposium
(pets). Ed. by Emiliano De Cristofaro and Steven J. Murdoch. Vol. 8555.
LNCS. Springer International Publishing, 2014, pp. 123–142. doi: 10.
1007/978-3-319-08506-7_7.

[LNZ+14] Fang Liu, Wee Keong Ng, Wei Zhang, Do Hoang Giang, and Shuguo
Han. “Encrypted Set Intersection Protocol for Outsourced Datasets.”
In: International Conference on Cloud Engineering (ic2e). Ed. by Azer
Bestavros et al. IEEE, 2014, pp. 135–140. doi: 10.1109/IC2E.2014.18.

[LW11] Allison Lewko and Brent Waters. “Decentralizing Attribute-Based En-
cryption.” In: eurocrypt. Ed. by Kenneth G. Paterson. Vol. 6632. LNCS.
Springer, 2011, pp. 568–588. doi: 10.1007/978-3-642-20465-4_31.

[Mea86] Catherine Meadows. “A More Efficient Cryptographic Matchmaking Pro-
tocol for Use in the Absence of a Continuously Available Third Party.” In:
Security and Privacy (s&p). Ed. by Clark Weissman et al. IEEE, 1986,
pp. 134–134. doi: 10.1109/SP.1986.10022.

[PR12] Omkant Pandey and Yannis Rouselakis. “Property Preserving Symmetric
Encryption.” In: eurocrypt. Ed. by David Pointcheval and Thomas
Johansson. Vol. 7237. LNCS. Springer, 2012, pp. 375–391. doi: 10.1007/
978-3-642-29011-4_23.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. “Faster Private
Set Intersection Based on OT Extension.” In: usenix security. Ed. by
Kevin Fu and Jaeyeon Jung. USENIX Association, 2014, pp. 797–812. url:
https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/pinkas (visited on 2019-01-30).

[SCR+11] Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and
Dawn Song. “Privacy-Preserving Aggregation of Time-Series Data.” In:
Network and Distributed System Security Symposium (ndss). The Internet
Society, 2011. url: https : / / www . ndss - symposium . org / ndss2011 /
privacy-preserving-aggregation-of-time-series-data/ (visited on
2019-01-30).

[Sma16] Nigel P. Smart. Cryptography Made Simple. Ed. by David Basin and
Kenny Paterson. Information Security and Cryptography. Cham: Springer
International Publishing, 2016. doi: 10.1007/978-3-319-21936-3.

[ZX15] Qingji Zheng and Shouhuai Xu. “Verifiable Delegated Set Intersection
Operations on Outsourced Encrypted Data.” In: International Conference
on Cloud Engineering (ic2e). Ed. by K. Selçuk Candan and Kyung Dong
Ryu. IEEE, 2015, pp. 175–184. doi: 10.1109/IC2E.2015.38.

https://doi.org/10.1007/978-3-319-08506-7_7
https://doi.org/10.1007/978-3-319-08506-7_7
https://doi.org/10.1109/IC2E.2014.18
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1109/SP.1986.10022
https://doi.org/10.1007/978-3-642-29011-4_23
https://doi.org/10.1007/978-3-642-29011-4_23
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas
https://www.ndss-symposium.org/ndss2011/privacy-preserving-aggregation-of-time-series-data/
https://www.ndss-symposium.org/ndss2011/privacy-preserving-aggregation-of-time-series-data/
https://doi.org/10.1007/978-3-319-21936-3
https://doi.org/10.1109/IC2E.2015.38

	Introduction
	Preliminaries
	Related Work
	Multi-client Functional Encryption for Set Operations
	Schemes Without an Evaluator Key

	Security
	Corruptions in Two-Client Functional Encryption

	Two-Client Constructions for Set Intersections
	Two-Client Set Intersection Cardinality
	Two-Client Set Intersection
	Two-Client Set Intersection with Data Transfer or Projection
	Two-Client Threshold Set Intersection

	Multi-client Constructions for Set Intersections
	Multi-client Set Intersection Cardinality
	Efficient Multi-client Set Intersection Cardinality
	Multi-client Set Intersection

	Evaluation
	Conclusion

