
Multi-client functional encryption (MC-FE) is a powerful concept that makes it
possible to compute on confidential data frommultiple parties, while only
revealing the computational outcome in the clear. This security guarantee makes
MC-FE a prime candidate for controlled data sharing as long as it can reach practical
efficiency for the functionalities needed in such a setting. General-purpose MC-FE

schemes allow for arbitrary computations on encrypted data, but require
non-standard security assumptions and are based on inefficient primitives. In
contrast, special-purpose MC-FE schemes can be both efficient and proven secure
under well-established assumptions. However, the few existing special-purpose
schemes cover only a limited number of functionalities.

We propose special-purpose MC-FE schemes for two essential classes of data
sharing functionalities: set operations and predicate testing. In the case of set
operations, we construct schemes that can determine the set intersection or the
cardinality thereof by employing a combination of pseudorandom functions (PRFs),
hash functions, secret sharing, and elliptic curve cryptography. For the case of
predicate testing, we present a compiler that turns any predicate description into
an evaluation scheme operating on inputs from various parties. As a special case,
we develop a construction to test the equality of vectors frommultiple parties that
provides a stronger security guarantee. All our predicate testing schemes are
based on a combination of PRFs, hash functions, secret sharing, and bilinear maps.

We implement and evaluate several of the above schemes for sets and vectors.
We see that our special-purpose schemes are at least four orders of magnitude
faster than general-purpose MC-FE schemes, resulting in evaluation times of
seconds on commodity hardware.

This PhD dissertation was funded by NWO in the context of the CRIPTIM project.

isbn: 978-90-365-4958-5
doi: 10.3990/1.9789036549585

9 789036 549585

MULTI-CLIENT

FUNCTIONAL

ENCRYPTION

FOR

CONTROLLED

DATA SHARING

M
ulti-clientFunctionalEncryption

forC
ontrolled

D
ata

Sharing
Tim

van
de

Kam
p

Multi-client Functional Encryption for
Controlled Data Sharing

Tim Robert van de Kamp

MULTI-CLIENT FUNCTIONAL ENCRYPTION FOR
CONTROLLED DATA SHARING

DISSERTATION

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus,
prof. dr. T. T.M. Palstra,

on account of the decision of the Doctorate Board,
to be publicly defended

on Friday the 21st of February 2020 at 16:45 hours

by

Tim Robert van de Kamp

born on the 23rd of October 1989
in Rotterdam, the Netherlands

This dissertation has been approved by:

Supervisor:

prof. dr. W. Jonker

Co-supervisor:

dr. A. Peter

DSI Ph.D. Thesis Series No. 19-023

isbn: 978-90-365-4958-5

doi: 10.3990/1.9789036549585

issn: 2589-7721

© 2020 T. R. van de Kamp, the Netherlands.
All rights reserved. No parts of this thesis may be reproduced, stored in a retrieval system
or transmitted in any form or by any means without permission of the author.
Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd, in enige
vorm of op enige wijze, zonder voorafgaande schriftelijke toestemming van de auteur.

https://doi.org/10.3990/1.9789036549585

Graduation Committee

Chairman/Secretary: prof. dr. J. N. Kok

Supervisor: prof. dr. W. Jonker

Co-supervisor: dr. A. Peter

Committee Members: prof. dr. F. Armknecht

prof. dr. M. Huisman

prof. dr. J. Müller-Quade

prof. dr. ir. M. R. van Steen

dr. M.H. Everts

iv

.

Abstract
. .

Multi-client functional encryption (mc-fe) is a powerful concept that makes
it possible to compute on confidential data from multiple parties, while only
revealing the computational outcome in the clear. This security guarantee
makes mc-fe a prime candidate for controlled data sharing as long as it can
reach practical efficiency for the functionalities needed in such a setting.
General-purpose mc-fe schemes allow for arbitrary computations on en-
crypted data, but require non-standard security assumptions and are based
on inefficient primitives. In contrast, special-purpose mc-fe schemes can be
both efficient and proven secure under well-established assumptions. How-
ever, the few existing special-purpose schemes cover only a limited number
of functionalities.

We propose special-purpose mc-fe schemes for two essential classes
of data sharing functionalities: set operations and predicate testing. In
the case of set operations, we construct schemes that can determine the
set intersection or the cardinality thereof by employing a combination of
pseudorandom functions (prfs), hash functions, secret sharing, and elliptic
curve cryptography (ecc). For the case of predicate testing, we present a
compiler that turns any predicate description into an evaluation scheme
operating on inputs from various parties. As a special case, we develop a
construction to test the equality of vectors frommultiple parties that provides
a stronger security guarantee. All our predicate testing schemes are based on
a combination of prfs, hash functions, secret sharing, and bilinear maps.

We implement and evaluate several of the above schemes for sets and
vectors. We see that our special-purpose schemes are at least four orders of
magnitude faster than general-purpose mc-fe schemes, resulting in evalua-
tion times of seconds on commodity hardware.

Keywords: Fine-grained data protection · Multi-client functional encryp-
tion · Non-interactive · Pairing-based cryptography

v

vi

.

Abstract (Dutch)
. .

Een belangwekkend begrip uit de cryptografie is multi-client functional en-
cryption (mc-fe). Hiermee is het mogelijk berekeningen uit te voeren op
vertrouwelijke data van meerdere partijen, terwijl enkel het resultaat van
de berekening zichtbaar is. Deze beveiligingsgarantie maakt van mc-fe een
geschikte kandidaat voor het gecontroleerd delen van data, zolang het maar
efficiënt genoeg kan worden toegepast in de praktijk. Generieke mc-fe ont-
werpen kunnen arbitraire berekeningen op versleutelde data uitvoeren, maar
vereisen ongebruikelijke complexiteitsaannamen en zijn gebaseerd op ineffi-
ciënte primitieven. Specifieke mc-fe ontwerpen daarentegen, kunnen zowel
efficiënt zijn alsook bewezen veilig onder gangbare complexiteitsaannamen.
Echter, de specifieke mc-fe ontwerpen die bestaan, beslaan maar een klein
deel van alle functionaliteiten.

Wij dragen specifieke mc-fe ontwerpen aan voor twee essentiële catego-
rieën functies voor het delen van data: bewerkingen op verzameling en het
toetsen van predicaten. In het geval van bewerkingen op verzameling maken
we ontwerpen die de doorsnede of de kardinaliteit daarvan kunnen bepa-
len door een combinatie van blokvercijfering, hashfuncties, secret sharing
en elliptische krommen toe te passen. Voor die gevallen waarbij predicaten
worden getoetst, presenteren we een compiler die een omschrijving van een
predicaat in een versleutelingsmethode voor dat predicaat kan omzetten. Als
een bijzonder geval ontwikkelen we een constructie die betere beveiligings-
garanties kan bieden voor het testen of vectoren van meerdere partijen gelijk
zijn. Al onze ontwerpen voor het toetsen van predicaten zijn gebaseerd op een
combinatie van blokvercijfering, hashfuncties, secret sharing en bilineaire
afbeeldingen.

We implementeren en evalueren verscheidene van de bovengenoemde
ontwerpen voor verzameling en vectoren. We zien dat onze specifieke ont-
werpen tenminste vier ordes van grootte sneller zijn dan generieke mc-fe
ontwerpen, hetgeen blijkt uit ontcijfering in seconden op consumentenelek-
tronica.

vii

viii

.

Acknowledgments
. .

First and foremost, I thank the consortium partners and financiers of the
criptim project. Owing to their support, I enjoyed great academic freedom
and could concentrate on the cryptologic solutions that I found most in-
teresting. I am also obliged to thank Willem Jonker and Andreas Peter for
their extensive time investment and supervision during my PhD trajectory.
Furthermore, it has been a pleasure to work with Maarten Everts and David
Stritzl. Their contributions as co-authors are highly appreciated.

On a more personal note, I also wish to thank the many colleagues that I
have met at the University. I particularly will not forget the conversations
I had with Ali, Marco, and Riccardo about the ups and downs during the
course of one’s PhD. Also the social activities outside office hours with Bence,
Chris, Herson, Roeland, Thijs, as well with Æde, Alexandr, Amina, Bertine,
Claudio, Dan, Elmer, Erik, Erwin, Florian, Geert Jan, Hudi, Inés, Kemilly,
Luigi, Muhammad, Philipp, Una, Valeriu, and several others were a welcome
distraction. I thank you all for the pleasant time I had in the office.

ix

x

.

Contents
. .

Abstract v

Abstract (Dutch) vii

Acknowledgments ix

1 Introduction 1
1.1 Controlled Data Sharing 1
1.2 Controlled Data Sharing By Fine-Grained Data Protection 2
1.3 Research Objective 3
1.4 Dissertation Outline 6
1.5 Contribution 6

2 Preliminaries 9
2.1 Common Primitives 9
2.2 Complexity Assumptions 12
2.3 Definitions of Functional Encryption Schemes 12
2.4 Security Definitions 13

3 Set Intersections: Two-Client and Multi-client Constructions 17
3.1 Introduction 17
3.2 Preliminaries 19
3.3 Related Work 20
3.4 Multi-client Functional Encryption for Set Operations 21
3.5 Security 22
3.6 Two-Client Constructions for Set Intersections 23
3.7 Multi-client Constructions for Set Intersections 28
3.8 Evaluation 34
3.9 Conclusion 35

4 Equality Tests: Vector Equality With Optional Wildcards 37
4.1 Introduction 37
4.2 Multi-client Predicate-Only Encryption 42
4.3 Our Construction 46
4.4 Security Proofs 51

xi

4.5 Implementation and Evaluation 59
4.6 Conclusion 61

5 General Predicates: Multi-authority Predicate Encryption 63
5.1 Introduction 63
5.2 Preliminaries 68
5.3 Related Work 72
5.4 Multi-authority Admissible Pair Encoding Scheme 74
5.5 Conversion from Encoding to Encryption 76
5.6 Security of the Conversion Algorithm 79
5.7 Multi-authority Pair Encoding Examples 92
5.8 Conclusion 96

6 Directions for Extending the Work 99
6.1 Towards More Efficient Corruption-Resistant mc-si 99
6.2 Towards Multi-authority Predicate Encryption in

Prime-Order Groups 103

7 Conclusions 131
7.1 Ways of Achieving Special-Purpose mc-fe 131
7.2 Efficiency of mc-fe 132

xii

.

1 Introduction
. .

In our digitalized society, an ever increasing amount of data is shared by
individuals, governments, and companies. Data sharing is practiced because
it benefits the parties involved by providing better insights. Despite the clear
advantages, most companies and organizations are also hesitant to share
their data. They realize that the moment they share their data, they lose their
ability to control how their data is being used. Once the data is shared, it
could be used by others (with potentially less benign intentions) to infer
more information than originally intended by the data sharer. Events from
the past have shown that the additional information that can be inferred from
shared data can be quite surprising [bz06; gp09; Goo13; Tro14], indicating
that it is hard to predict all potential negative consequences of data sharing.

1.1 Controlled Data Sharing

In an effort to mitigate the risks of losing control over shared data, several
approaches exists. Since data is like any other asset a company might possess,
the decision on whether a specific data protection technique is appropriate
depends on the sensitivity of the data and the impact of losing control over
the data. Hence, governments and companies commonly take a combination
of three approaches to minimize the risk arising from data sharing: limit the
sharing to trusted partners, share within a legal framework, and minimize
the data that needs to be shared.

Trust-based approaches try to foster the establishment of trust among
parties. A strong governmental push [pcc97; irtpa; eulex] for informa-
tion sharing has led to several trust-based sharing initiatives. For example,
in Europe, representatives of several critical infrastructure (ci) companies
exchange sensitive information during physical meetings organized by infor-
mation sharing and analysis centers (isacs). Data is only shared with another
party if that party is trusted to act in accordance with the rules on how the
data may be processed. Typically, these rules include restrictions on how the
information may be disseminated, e.g., using the traffic light protocol [lk15a].
A major drawback of trust-based solutions is that trust is slow to establish,
not transitive, and often personal, i.e., not the company is trusted, but a
person working at that company. For these reasons, trust-based solutions do

1

Chapter 1. Introduction

not scale well.
Using a legal framework, e.g., by using contracts and legislation, parties

can formalize their agreement on how shared data should be processed.
Additionally, parties can decide to set penalties on the improper processing
of data or the misuse of the shared information. While parties may hope to
discourage data misuse using the repressive effect from imposing big fines
on the misuse of data, legal enforcement cannot prevent data misuse: Legal
enforcement cannot control how shared data is used by other parties, it can
only enforce rules whenever a party already committed a breach of contract.

To prevent data misuse, a simple solution is to not share the data at
all. Of course, this is not an option if parties want to seize the benefits of
information sharing. Instead, parties can apply data minimization to share
only the data that is needed to achieve a predefined goal. For example, if it is
only needed to get an impression of a data set, parties can share statistics
that summarize the data set, instead of revealing the individual data items.
However, it is not always possible to define the precise goals of the data
sharing upfront. Even worse, it is not always so simple to solely reveal the
needed information without indirectly revealing more than intended. For
example, consider an auction where the seller needs to know who won the
bidding, but the bidders do not want to reveal their bid if they have not won.

A combination of the approaches described above can help to achieve
more controlled data sharing through the use of a trusted third party (ttp).
In such a case, several parties only reveal their data to a common ttp, each
participant entrusting the third party to carry out a computation on their data
and to only reveal the outcome of that computation. This way, the amount
of data that is revealed to parties other than the ttp can be minimized, as
they only need to learn the output of the computation, not the inputs to the
computation.

1.2 Controlled Data Sharing By Fine-Grained Data Protection

Using data protection techniques, we can prevent unauthorized parties from
gaining access to data and thus limit the possibilities of data misuse. We can
therefore regard data protection as amethod to implement dataminimization
in the context of data sharing. However, the use of traditional data protection
techniques, such as symmetric and public key encryption, do not allow for fine-
grained data protection nor data sharing. For example, consider a scenario
where we only want to share information about data items that we have in
common with another party. Using traditional encryption we cannot solve
this problem: We either need to reveal all our data items to the other party,

2

1.3. Research Objective

the other party needs to reveal all their data items to us, or we need to rely
on a trusted third party to tell us which data items we have in common.

The limitation of traditional encryption comes from the fact that we
are required to remove the encryption (and thereby also the protection
mechanism) before we can meaningfully share the data with another party.
In contrast, modern cryptographic techniques enable parties to share their
data cryptographically protected, while still allowing other parties to infer
information from the data via restricted computations on the encrypted data.
With the same techniques we can choose to disclose only part of our data or
only disclose information if certain conditions have been met.

While we could already share a minimized form of data with other parties
using the help of a trusted third party, a cryptographic approach does not
suffer fromhaving to trust another party. Using cryptography, we can prove to
preserve the confidentiality of the data that parties do not want to share with
anyone under a well-specified attacker model and complexity assumptions.

1.3 Research Objective

Considering that fine-grained data protection can help to better control data
sharing, we set ourselves the objective to develop effective data protection
techniques for fine-grained data sharing. Our research objective can therefore
be summarized as follows.

Research Objective

“Develop effective fine-grained data protection techniques that
enable parties to only reveal the information that they want to
share.”

As explained in the section above, computations on encrypted data enable
us to selectively reveal information. Several cryptographic techniques are
capable of computing on encrypted data. However, we set our objective to
develop an effective technique. We therefore restrict ourselves to practical
techniques that minimize our assumptions about the settings in which data
is shared.

To minimize the number of assumptions, we avoid constraining our solu-
tions to situationswhere all parties need to be on-line during data sharing. We
do this because solutions that use interactive protocols are unsuitable in situ-
ations where communication is costly (e.g., when using resource constrained
devices) or where communication is impossible (e.g., if not all participants
are aware of each other’s participation). This means that we exclude cryp-
tographic techniques such as secure multi-party computation, since they

3

Chapter 1. Introduction

require multiple rounds of communication between the participants. Sim-
ilarly, we also have to exclude homomorphic encryption (he) techniques:
While he allows for computations on encrypted data, the output of the com-
putation is still encrypted. Therefore, for the shared data to be useful, we
require at least one round of communication to learn the decrypted output
of the computation. Instead, using functional encryption (fe) we can avoid
interaction while still allowing for computations on encrypted data. In an
fe scheme, decryption keys are associated with a functionality 𝑓 and the
decryption of an encrypted message 𝑚 returns the function applied to the
message, 𝑓(𝑚). As a result, we primarily consider fe schemes.

To develop practical techniques, we construct and evaluate fe schemes
for functionalities useful for generic data sharing. That is, we do not con-
struct new encryption schemes aimed at solving a specific problem, instead,
we construct schemes that can be used as a building block in many data shar-
ing settings. While fe schemes for generic functionalities exists [ggh⁺13a;
ggh⁺13b; gkp⁺13], they rely on heavy cryptographic machinery such as in-
distinguishability obfuscation (𝑖𝒪) using multilinear maps. Because these
constructions are slow [ahk⁺14; bok⁺15; hhs⁺17] and based on primitives
which have already been broken several times [chl⁺15; cll⁺16; cgh17; bhj⁺19],
we consider fe schemes for smaller function classes. By limiting fe to a
small class of functions or even to a single functionality, we aim to develop
practically efficient techniques for data sharing.

To analyze whether an fe type is suitable for effective data sharing, we
first need to say something about the type of data sharing. We can classify
data sharing by looking at the number of senders and receivers. For example,
a face-to-face meeting is a form of one-to-one data sharing, while posting an
article on a website is of the form one-to-many. There can also be multiple
data senders. For example, in many-to-one data sharing, several parties share
their data with a single party.

We find that non-interactive techniques for the one-to-𝑥 type of data
sharing can be very efficient [kpe⁺16], but also that such techniques can never
be secure when part of the data that needs to remain secret is predictable (i.e.,
having a low min-entropy). The reason for this limitation of non-interactive
one-to-𝑥 data sharing is simple to explain through an example. Suppose Alice
wants to share a message 𝑚 with Bob, if and only if predicate 𝑃 evaluates to
true based on Bob’s data items. However, even if Alice encrypts both her
message and predicate, Bob is able to learn the message 𝑚 if he can predict
which data items make the predicate evaluate to true. To do so, Bob can
just evaluate the encrypted predicate for many possible inputs (even for
inputs other than his own data items) until he finds the input that makes

4

1.3. Research Objective

the predicate evaluate to true. Since no interaction is required, Bob can
evaluate the predicate many times—even without Alice noticing—and, by the
functionality that the construction provides, Bob is able to learn the value 𝑚
if he knows an input that evaluates the predicate to true.

Generalizing the example, we see that if Alice wants to disclose the
value 𝑓(𝑚𝐴, 𝑚𝐵) based on Bob’s input 𝑚𝐵 in a non-interactive way, Alice
has to share the function 𝑓𝑚𝐴

(⋅) = 𝑓(𝑚𝐴, ⋅). However, by this provided func-
tionality, Bob can determine the values 𝑓𝑚𝐵

(𝑚𝐴) = 𝑓(𝑚𝐴, 𝑚𝐵) for many
different inputs 𝑚𝐵 and learn as much as possible about Alice’s input 𝑚𝐴.

To avoid the inherent negative security result from one-to-𝑥 type of data
sharing, we look at the more interesting case of many-to-𝑥 data sharing. We
develop constructions for the type of data sharing where a function 𝑓 is eval-
uated on multiple inputs from different parties. This concept corresponds to
multi-client functional encryption (mc-fe) where the decryption algorithm
requires a decryption key, associated with an 𝑛-ary function 𝑓, and 𝑛 en-
crypted values 𝑥1, … , 𝑥𝑛 to output 𝑓(𝑥1, … , 𝑥𝑛). Using mc-fe it is possible
to compute a function on the data items of all sharing participants, while
also guaranteeing that the parties’ individual data items remain confidential.
An example mc-fe used in the context of fine-grained information sharing
can be found in sharing the sum of several participants inputs, while keeping
each participant input confidential [kpe⁺16].

Based on the discussion above, we formulate our first research question
for constructing mc-fe schemes for basic data sharing functionalities.

Research Question 1

“How to construct fine-grainedmulti-client functional encryption
schemes for basic functionalities, such as set intersections and
predicate evaluations?”

Besides constructing mc-fe for new functionalities, we also want to assess
the practically of the constructions. Whether a solution is practical, depends
on the application, effectiveness, the functionality, and the efficiency of the
implementation. Since we are concerned with functionalities for generic use
cases, we can simplify the practicability assessment to the following question:

Research Question 2

“How efficient can the use of multi-client functional encryption
in the context of data sharing be?”

We assess the efficiency of the schemes by creating proof-of-concept im-
plementations and evaluation our implementations on commodity hardware.

5

Chapter 1. Introduction

Figure 1.1. Hierarchy of
��-�� schemes for vari-
ous functionalities.

mc-fe

single key

summations
[scr⁺11]

set intersections
Chapter 3

function class

generic
e.g., [ggh⁺13a]

predicates
Chapter 5

equality tests
Chapter 4

inner products
e.g., [cdg⁺18]

However, the decision whether a scheme is efficient enough in practice, heav-
ily depends on the use case. For example, an encryption scheme that takes
one second to decrypt a message is not suitable for a system that monitors
live network traffic, while the same scheme might be perfectly suitable in a
case where data is shared on an hourly basis. The evaluations we provide in
this dissertation should merely give an impression on whether the use of a
certain technique is viable for a specific setting.

1.4 Dissertation Outline

After discussing the preliminaries on mc-fe in Chapter 2, containing the
definitions of the attackermodels and the often used complexity assumptions,
we look at several mc-fe constructions. In Chapters 3 to 5, we discuss several
mc-fe schemes grouped by the provided function classes. Chapter 6 contains
several directions for extending the work before we conclude in Chapter 7.

Figure 1.1 gives a schematic overview of how our mc-fe constructions
relate to mc-fe constructions that have been proposed before. We distin-
guish two types of mc-fe: schemes that only support one functionality—also
termed single key [klm⁺18], since there is only one decryption key for a single
functionality—and schemes that support a class of functions.

1.5 Contribution

To answer both research questions, we construct and evaluate several mc-fe
schemes for various functionalities.

Set Intersections For situations where parties only want to selectively re-
veal their data, we construct mc-fe schemes for set intersections in Chapter 3.

6

1.5. Contribution

Using such a scheme parties can decide to only share how many data items
they have in common with other parties or only share information about
those data items they have in common with other parties. This functionality
allows for privacy-preserving profiling where, for example, law enforcement
only learns the identity of individuals who match all search criteria.

We show that it is possible to construct very efficient two-client fe
schemes using already widely used cryptographic primitives. While the multi-
client counterparts for many-to-one data sharing require more advanced
cryptographic constructions, we are the first to show the existence of such a
scheme. Additionally, in Chapter 6, we detail an idea for new constructions
both improving the evaluations complexity and satisfying more stringent
security guarantees.

Equality Tests Instead of constructing mc-fe for one specific functionality,
we construct an mc-fe scheme for a class of equality testing functionalities
in Chapter 4. By choosing to construct mc-fe for a class of functionalities, we
do not require parties to know precisely what information they have to reveal:
By changing the decryption key, we can change the specific functionality that
is evaluated.

We motivate our construction by applying it as a monitoring system in
the context of critical infrastructure protection. A remarkable feature of the
proposed construction is that neither the functionality, nor the participants’
data have to be revealed in order to monitor the participants. Instead, the
only information that is disclosed to the monitor is whether it should raise
an alarm or not. By implementing our scheme, we see that in a realistically
sized monitoring system, evaluations of the functionality can be done in well
under a second.

General Predicates In an effort to allow for an even larger functionality
class that is still relatively efficient to evaluate, we consider the class of general
predicates. In Chapter 5, we extend the concept of a pair encoding scheme
to construct a variant for multiple parties, a multi-authority admissible pair
encoding scheme (ma-pes). Using such an ma-pes for a specific predicate, we
obtain a multi-authority predicate encryption (ma-pe) scheme by applying a
conversion algorithm. We propose ma-pess for identity-based encryption,
attribute-based encryption, and inner-product predicate encryption (ippe),
achieving multi-authority versions of these predicate encryption types. Our
generic approach allows us, for the first time, to construct multi-authority
schemes that can consist of different predicate types. Moreover, we show
how to construct the first multi-authority ippe scheme.

7

Chapter 1. Introduction

A big practical advantage of our ma-pe construction is that the resulting
schemes avoid key escrow by a single authority and do not require authori-
ties to be aware of each other’s existence. Concretely, this allows a content
provider to broadcast encrypted content while ensuring that only its cos-
tumers with a matching profile (e.g., “student” or “18+”) can decrypt the
content. Such a profile can combine various attributes from distinct authori-
ties, e.g., a “student” attribute issued by a university and an “18+” attribute
issued by a local government.

Additionally, in Chapter 6, we detail an idea for basing our construction
on prime-order bilinear groups, leading to a faster scheme for the same
security level.

8

.

2 Preliminaries
. .

In this chapter, we give an overview of the notations, used primi-
tives, complexity assumptions, and other definitions. Some of
the later chapters also contain a preliminaries section, there we
only cover the preliminaries needed for that specific chapter. De-
pending on the background of the reader, this chapter may be
skipped and only used as a reference once something is unclear
in one of the following chapters.

Throughout this dissertation, we use 𝑥 𝑅← S to denote that 𝑥 is chosen
uniformly at random from the finite set S . If an element 𝑥 ∈ S is a uni-
formly random element from the finite set S , we write 𝑥 ∈𝑅 S . The ordered
set of number {1, … , 𝑛} is denoted by [𝑛], while we denote the ordered
set {0, … , 𝑛} by [𝑛]+. We denote the 𝑖th component of a vector 𝐯 as 𝑣𝑖. For
a set of indices I , we write 𝐯I for the subvector of 𝐯. Instead of consistently
using the vector notation, we use the set notation when this is clearer or
more convenient. For example, use a derived notation for 𝑛-ary functions to
denote that some of its (not necessarily consecutive) inputs are hardwired
in the function as 𝑓({𝑥𝑖}𝑖∈I⊂[𝑛], ⋅). We work with notation for vectors of
group elements, e.g., the column vector (𝑔𝑣1, … , 𝑔𝑣𝑛)T is written as 𝑔𝐯. For
matrices we use upper case variables such as M. In the descriptions of the
security games, we use the standard notation 𝒜𝒪(⋅) for an adversary 𝒜 having
oracle access to a subroutine 𝒪 without knowing the specification of this
subroutine other than its domain and codomain. We denote computational
indistinguishability using the binary relation ≈𝑐.

2.1 Common Primitives

We use several symmetric-key primitives for encryption.
We (informally) say that a function 𝐹𝑘 is a pseudorandom function (prf)

if the output of𝐹𝑘 is indistinguishable from the output of a function𝑅 chosen
uniformly at random from the set of all possible functions from ℳ to 𝒞.

Definition 1 (Pseudorandom Function). A family of functions with do-
mainℳ and codomain 𝒞 indexed by a key 𝑘 ∈ 𝒦, i.e., {𝐹𝑘}𝑘∈𝒦 with𝐹𝑘 : ℳ →

9

Chapter 2. Preliminaries

𝒞, is pseudorandom, if for any probabilistic polynomial time (p.p.t.) adver-
sary 𝒜, its advantage in distinguishing 𝐹𝑘 from a uniformly at random sam-
pled function 𝑅,

∣Pr
𝑘

[𝒜𝐹𝑘(⋅) = 1] − Pr
𝑅: ℳ→𝒞

[𝒜𝑅(⋅) = 1]∣ ,

is negligible.

Similarly, a function 𝑃𝑘 is (informally) termed a pseudorandom permu-
tation (prp) if the output of 𝑃𝑘 is indistinguishable from the output of a
permutation chosen uniformly at random from the set of all possible permu-
tations over ℳ. The advanced encryption standard (aes) is a well-known
example of a prp.

Definition 2 (Pseudorandom Permutation). A family of permutations over
the domain ℳ indexed by a key 𝑘 ∈ 𝒦, i.e., {𝑃𝑘}𝑘∈𝒦 with 𝑃𝑘 : ℳ → ℳ, is
pseudorandom, if for any p.p.t. adversary𝒜, its advantage in distinguishing𝑃𝑘
from a uniformly at random sampled permutation 𝜋,

∣Pr
𝑘

[𝒜𝑃𝑘(⋅),𝑃 −1
𝑘 (⋅) = 1] − Pr

𝜋: ℳ→ℳ
[𝒜𝜋(⋅),𝜋−1(⋅) = 1]∣ ,

is negligible.

Another primitive we use is secret sharing.

Definition 3 (Shamir’s Secret Sharing Scheme [Sha79]). The 𝑡-out-of-𝑛
Shamir’s secret sharing scheme uses a 𝑡-degree polynomial 𝑓 over a finite
field 𝔽𝑝. To share a secret 𝑠, set 𝑓(0) = 𝑠 and pick all other coefficients of the
polynomial uniformly at random in 𝔽𝑝. Shares can be created by picking a
tuple (𝑖, 𝑓(𝑖)) for distinct values 𝑖. To recover the secret from a set containing
at least 𝑡 distinct shares { (𝑖, 𝑓(𝑖)) ∶ 𝑖 ∈ S, |S| ≥ 𝑡 }, Lagrange interpolation
is used, 𝑓(0) = ∑𝑖∈S 𝑓(𝑖) ⋅ ΔS,𝑖,where ΔS,𝑖 = ∏𝑗∈S,𝑗≠𝑖(𝑗 ⋅ (𝑗 − 𝑖)−1).

In our functional encryption (fe) schemes we make extensive use of
non-degenerate bilinear maps, also termed pairings.

Definition 4 (Pairing). Let 𝔾1, 𝔾2, and 𝔾𝑇 be cyclic multiplicative groups
of finite order 𝑁. The map 𝑒: 𝔾1 × 𝔾2 → 𝔾𝑇 is a pairing if the following
two conditions hold:

• Themap is bilinear; for all generators 𝑔1 ∈ 𝔾1, 𝑔2 ∈ 𝔾2, and 𝑎, 𝑏 ∈ ℤ𝑁,
we have that 𝑒(𝑔 𝑎

1 , 𝑔 𝑏
2) = 𝑒(𝑔1, 𝑔2)𝑎𝑏.

10

2.1. Common Primitives

• The map is non-degenerate; there exists generators 𝑔1 and 𝑔2 such
that the order of the element 𝑒(𝑔1, 𝑔2) ∈ 𝔾𝑇 equals 𝑁, the order of
group 𝔾𝑇.

Following the classification of Galbraith, Paterson, and Smart [gps08],
we distinguish three types of pairings:

Type 1 a symmetric pairing with 𝔾1 = 𝔾2;

Type 2 an asymmetric pairing with 𝔾1 ≠ 𝔾2 and an efficiently computable
homomorphism 𝜙: 𝔾2 → 𝔾1;

Type 3 an asymmetric pairing with 𝔾1 ≠ 𝔾2, but without a known efficiently
computable homomorphism between 𝔾1 and 𝔾2.

We use the function 𝒢𝑖(1𝜆) to generate the parameters for a Type 𝑖 pairing
for security parameter 𝜆.

Type 1 pairings—constructed using supersingular elliptic curves—can
have a composite order 𝑁 [bgn05], while only pairings of prime-order groups
are known for Type 2 and Type 3 pairings. In these composite-order pairings
with 𝑁 = 𝑝1𝑝2 ⋯ 𝑝𝑚, we refer to the subgroups of 𝔾 of prime order 𝑝1,
𝑝2, … , 𝑝𝑚, as 𝔾1 till 𝔾𝑚, respectively. Similarly, we write 𝑔1, … , 𝑔𝑚 for the
generators of the respective subgroups.

These composite-order pairings possess the useful orthogonality prop-
erty [Lew12] that fulfills a crucial role in the security proofs of schemes
that use composite-order pairings. Let 𝑔 denote a generator of the group
of order 𝑁 = 𝑝1𝑝2 ⋯ 𝑝𝑚. For two generators 𝑔𝑖 = 𝑔𝑁∕𝑝𝑖 and 𝑔𝑗 = 𝑔𝑁∕𝑝𝑗 of
distinct subgroups of order 𝑝𝑖 and 𝑝𝑗 (i.e., 𝑝𝑖 ≠ 𝑝𝑗), we have the following
property

𝑒(𝑔𝑖, 𝑔𝑗) = 𝑒(𝑔𝑁∕𝑝𝑖, 𝑔𝑁∕𝑝𝑗) = 𝑒(𝑔, 𝑔)𝑁∕𝑝𝑖⋅𝑁∕𝑝𝑗 = 𝟙.

Recent advancements in the field of Index Calculus have important conse-
quences for the security of pairing-based cryptography. For example, recent
results [bd18] show that a 254 bit bn curve (Type 3) with an embedding degree
of 12 [bn06], has a bit security level of about 100 bits. For lower embedding
degrees the attacks are even more devastating: both pairings using a 512 bit
supersingular curve 𝑦2 = 𝑥3 + 𝑥 (Type 1) with embedding degree of 2 and a
159 bit mnt curve (Type 3) with embedding degree of 6 [mnt01] only have a
bit security level of about 60 bits. However, new pairings are proposed [fm19]
that are secure against these attacks.

11

Chapter 2. Preliminaries

2.2 Complexity Assumptions

We use a variety of complexity assumptions in our constructions. Assump-
tions specific to a construction, we cover in the preliminaries of the chapter
specific to the construction.

Assumption 1. The decisional Diffie–Hellman (ddh) assumption states that,
given (𝔾, 𝑔 ∈ 𝔾, 𝑔𝑎, 𝑔𝑏, 𝑇) for uniformly at random chosen 𝑎 and 𝑏, it is hard
to distinguish 𝑇 = 𝑔𝑎𝑏 from 𝑇 𝑅← 𝔾.

The ddh assumption is easily broken if a pairing on 𝔾 is available. There-
fore, when using pairing-based cryptography, we often need other assump-
tions as well.

The 𝑑-Linear assumption is a generalization of the decision linear as-
sumption [bbs04] and is also defined in pairing groups [bw06; Sha07]. Note
that the 1-Linear assumption is the ddh assumption (which does not hold
in pairing groups) and that the 2-Linear assumption is the decision linear
assumption in pairing groups.

Assumption 2 (𝑑-Linear [bbs04; bw06; Sha07]). Let gp = (𝑝, 𝔾1, 𝔾2, 𝔾𝑇,
𝑒, 𝑔1, 𝑔2) be generated by 𝒢3(1𝜆). We define 𝐚 𝑅← (ℤ∗

𝑝)𝑑, 𝑎𝑑+1
𝑅← ℤ∗

𝑝 and
𝐬 𝑅← (ℤ𝑝)𝑑, 𝑠𝑑+1

𝑅← ℤ∗
𝑝. Given (gp, 𝑔 𝐚

1 , 𝑔 𝑎𝑑+1
1 , 𝑔 𝐚

2 , 𝑔 𝐚∘𝐬
1 , 𝑇), where ∘ denotes

the pointwise product, it is hard to distinguish if 𝑇 = 𝑔 𝑎𝑑+1 ∑𝑑
𝑖=1 𝑠𝑖

1 or 𝑇 =
𝑔 𝑎𝑑+1 ∑𝑑

𝑖=1 𝑠𝑖+𝑠𝑑+1
1 .

Another complexity assumption that typically occurs in pairing-based
cryptography is the symmetric external Diffie–Hellman (sxdh) assumption.

Assumption 3 (Symmetric External Diffie–Hellman). Given the bilinear
groups 𝔾1 and 𝔾2, the symmetric external Diffie–Hellman (sxdh) assump-
tion states that the ddh problem in both group 𝔾1 and group 𝔾2 is hard.

If the ddh problem is only required to hold in one of the groups 𝔾1 or
𝔾2, we refer to this assumption as the external decisional Diffie–Hellman
(xddh) assumption.

2.3 Definitions of Functional Encryption Schemes

In an fe scheme [bsw11; ONe10], decryption keys are associated with a func-
tionality 𝑓 and the decryption of an encryptedmessage𝑚 returns the function
applied to the message, 𝑓(𝑚), instead of the original message 𝑚. This con-
cept can be extended to functions with more than one input, resulting in a

12

2.4. Security Definitions

multi-input functional encryption (mi-fe) scheme [ggg⁺14]. Correspond-
ingly, the decryption algorithm of an mi-fe scheme requires a decryption
key, associated with an 𝑛-ary function 𝑓, and 𝑛 encrypted values 𝑥1, … , 𝑥𝑛
to output 𝑓(𝑥1, … , 𝑥𝑛).

A strict subset of these mi-fe schemes are termed multi-client functional
encryption (mc-fe) schemes [ggg⁺14]. In such an mc-fe scheme, the inputs
for the 𝑛-ary function 𝑓 are given by 𝑛 distinct parties, termed clients. Each
client encrypts their input using their own encryption key, usk, and a time-step
or session identifier, ID. This identifier is used to determine which ciphertexts
from the various clients belong together. To evaluate a function 𝑓 using the
corresponding decryption key, all inputted ciphertexts need to be associated
with the same identifier or otherwise decryption will fail.

Definition 5 (Multi-client Functional Encryption). An mc-fe scheme for a
functions class ℱ of polynomial time functions, consists of the following four
polynomial time algorithms.
Setup(1𝜆, 𝑛) → (pp,msk,usk1, … ,usk𝑛). On input of the security parame-
ter 𝜆 and the number of clients 𝑛, the algorithm outputs the public parame-
ters pp, a master secret key msk, and the clients’ secret keys usk𝑖 for each
client 1 ≤ 𝑖 ≤ 𝑛.

The public parameters pp are implicitly used by the other algorithms.
KeyGen(msk, 𝑓) → esk𝑓. The key generation algorithm is used to create an
evaluation key for the function 𝑓. To create such an evaluation key esk𝑓, the
algorithm takes the master key msk and a description of a function 𝑓 ∈ ℱ as
input.
Encrypt(usk𝑖, ID, 𝑥𝑖) → ctID,𝑖. For a client 𝑖 to encrypt a value 𝑥𝑖 for identi-
fier ID, the client uses its secret key usk𝑖 and outputs the ciphertext ctID,𝑖.
Eval(esk𝑓, ctID,1, … , ctID,𝑛) → 𝑓(𝑥1, … , 𝑥𝑛). An evaluator having the evalua-
tion key esk𝑓 and a ciphertext for identifier ID from every client, outputs the
function evaluation 𝑓(𝑥1, … , 𝑥𝑛).

Note that we informally defined correctness in the Eval algorithm of
Definition 5. Similarly, in the following chapters, we show correctness of a
scheme inside the definition of the Eval (or Decrypt) algorithm if the proof is
relatively simple.

2.4 Security Definitions

In this dissertation we use indistinguishability-based security games. Many,
slightly different, security definitions exists formc-fe. Typically, we at least re-
quire that the encrypted clients’ values ctID,𝑖 do not reveal information about

13

Chapter 2. Preliminaries

the plaintext values 𝑥𝑖 (sometimes referred to as plaintext-privacy [ssw09]).
We might also require that an evaluation key esk𝑓 does not reveal which
specific functionality 𝑓 from the class of functions ℱ it is associated with
(this notion is termed predicate-privacy [ssw09]).

Besides the question of what needs to be hidden from the adversary,
different security games exists for under which conditions security is proven
to hold. For example, we often require that even if a subset of the clients ̄𝐼 ⊂
[𝑛] is corrupt, i.e., share their usk with the adversary, the ciphertexts from
the uncorrupted clients 𝐼 = [𝑛] ∖ ̄𝐼 are still indistinguishable from random
values. Also, as a more technical example, we can require the adversary in a
security game to commit to (part of) its challenge options before receiving the
scheme’s public parameters. Such type of security game is termed selective. A
selective game can be turned into an adaptive security game using complexity
leveraging, i.e., by letting the adversary guess the challenge options, at the
costs of an exponential security loss [bb04a, Theorem 7.1].

One of the strongest security games for mc-fe are termed full security
under static corruptions, also referred to as “adaptive ind-security” in the
symmetric-key setting [gkl⁺13, Definition 2.6]. This game satisfies plaintext-
privacy if the corrupted clients are announced by the adversary before seeing
the public parameters.

Definition 6 (Adaptive ind-security of mc-fe). An mc-fe scheme is fully
secure under static corruptions if any p.p.t. adversary 𝒜 has at most a negligible
advantage in winning the following game.

Corruptions The adversary sends a set of uncorrupted and corrupted clients
to the challenger, 𝐼 and ̄𝐼, respectively.
Setup The challenger ℬ picks a bit 𝑏 𝑅← {0, 1}, and sends the public para-
meters pp along with the user keys of the corrupted clients {usk𝑖}𝑖∈ ̄𝐼 to the
adversary 𝒜.

Query 1 The adversary may query the challenger for the encryption of
values 𝑥𝑖 for uncorrupted clients 𝑖 ∈ 𝐼 associated with an ID that has not
been used before. For each uncorrupted client 𝑖 ∈ 𝐼, the challenger returns
the encrypted value ctID,𝑖 ← Encrypt(usk𝑖, ID, 𝑥𝑖).

Additionally, the adversary may query for evaluation keys by submitting
a function 𝑓 ∈ ℱ to the challenger. The challenger responds using esk𝑓 ←
KeyGen(msk, 𝑓).

Challenge The adversary sends two equally sized values 𝑥∗
𝑖,0 and 𝑥∗

𝑖,1
for every uncorrupted client 𝑖 ∈ 𝐼 together with an ID∗ that has not been
used before. The challenger checks if the challenge is allowed by check-
ing if 𝑓({𝑥∗

𝑖,0}𝑖∈𝐼, ⋅) = 𝑓({𝑥∗
𝑖,1}𝑖∈𝐼, ⋅) for all queried 𝑓. If this is not the

14

2.4. Security Definitions

case the challenger aborts the game. Otherwise, it returns the ciphertexts
ct∗ID∗,𝑖 ← Encrypt(usk𝑖, ID∗, 𝑥∗

𝑖,𝑏) for every uncorrupted client 𝑖 ∈ 𝐼.

Query 2 Identical to Query 1, with the additional restriction that new key
queries must not violate the constraint described in Challenge.

Guess The adversary 𝒜 outputs its guess 𝑏′ for the challenger’s bit 𝑏. We
say that 𝒜 wins the game if 𝑏′ = 𝑏.

15

Chapter 2. Preliminaries

16

.

3 Set Intersections
Two-Client and Multi-client Constructions

. .

As explained in the introduction, we construct various multi-
client functional encryption schemes for different functionalities.
In this chapter we construct multiple encryption schemes for set
intersection andvariants on twoormore sets, thereby addressing
part of Research Question 1. We are the first to consider several
set operations in a non-interactive setting such as multi-client
functional encryption. In our schemes, a party may learn a set
operation (e.g., set intersection) from the sets of two or multiple
clients, without having to learn the plaintext set of each individual
client. For the case of two clients, we construct efficient schemes
for determining the set intersection and the cardinality of the
intersection. To evaluate the cardinality of the intersection, no
overhead is incurred compared with operating on plaintext data.
We also present other functionalities with a scheme for set in-
tersection with data transfer and a threshold scheme that only
discloses the intersection if both clients have at least 𝑡 elements
in common. Finally, we consider set intersection and set inter-
section cardinality schemes for the case of three or more clients
from a theoretical perspective. Answering Research Question 2
using our proof-of-concept implementations, we show that the
two-client constructions are very efficient—running in less than
milliseconds—and scale linearly in the set sizes. The multi-client
constructions are more involved and can be evaluated in the
order of seconds.

This chapter is based on the work “Two-Client and Multi-client
Functional Encryption for Set Intersection” [���+19], presented
at �����.

3.1 Introduction

In this chapter, we explore the set intersection functionality and several
variants. Inspired by the popularity of private set intersection (psi) pro-

17

Chapter 3. Set Intersections: Two-Client and Multi-client Constructions

Table 3.1. Overview
of the presented ��-��
schemes for set opera-
tions.

functionality two-client multi-client

set intersection § 3.6.2 § 3.7.3
set intersection cardinality § 3.6.1 §§ 3.7.1, 3.7.2

set intersection with data transfer § 3.6.3 open problem
(see Chapter 6)

threshold set intersection § 3.6.4 open problem

tocols [psz14], we define a scheme for determining the set intersection of
two clients’ sets in a non-interactive manner. Additionally, we propose sev-
eral other non-interactive variants of interactive psi protocols that were
previously proposed in literature. We construct a two-client functional en-
cryption (2c-fe) scheme for determining the cardinality of the intersection
(i.e., |S𝑎 ∩ S𝑏|, where S𝛾 is the set belonging to client 𝛾), similar to psi cardi-
nality [ks05]. We also consider a non-interactive 2c-fe version of the less
common psi with data transfer [dt10; jl10], where the common set elements
are shared with associated data (i.e., { (𝑥𝑗, 𝜑𝑎(𝑥𝑗), 𝜑𝑏(𝑥𝑗)) ∣ 𝑥𝑗 ∈ S𝑎 ∩ S𝑏 },
where𝜑𝛾(𝑥𝑗) is the data associated with 𝑥𝑗 by client 𝛾). Finally, we construct
a threshold scheme where the set intersection is only revealed if two clients
have at least 𝑡 set elements in common.

Following our 2c-fe schemes, we also explore the much harder multi-
client case where we propose multi-client functional encryption (mc-fe)
schemes for determining the (cardinality of the) set intersection of more
than two sets. While 2c-fe schemes could also be used to determine the
intersection of multiple sets, doing so would leak information about the inter-
section of each pair of sets. To prevent this undesirable leakage and achieve
secure mc-fe for set intersection, we require more involved constructions.

An overview of constructions for mc-fe for set intersection presented in
this work is given in Table 3.1.

Although the functionalities for our mc-fe schemes are inspired by vari-
ous psi protocols, the usage scenario differs in a crucial way: We apply our
mc-fe schemes in a scenario where a third party, termed the evaluator, learns
the function outcome. In Section 3.5.1 we explain why non-interactive 2c-
fe cannot be secure if one of the clients also serves as the evaluator. We
highlight the difference between psi and our mc-fe for set intersection in
Figure 3.1.

Using the functionalities provided by our constructions, it is possible
to achieve privacy-preserving profiling. For example, consider a case where
the police is looking for suspects which were both present at a concert and
recently received a large sum of money on their bank account. Using a 2c-fe
scheme for determining the set intersection, the police will only learn about

18

3.2. Preliminaries

𝑃1 𝑃2

S1 S2
𝑓(S1,S2) 𝑓(S1,S2)

exchange of messages

to compute 𝑓(S1,S2)

(a) A typical scenario of ���. Both parties
learn the output of the function evaluation,
but not each other’s inputs.

evaluator

𝐶1 𝐶2 𝐶𝑛⋯

S1 S2 S𝑛

𝑓(S1, … ,S𝑛)

Encrypt(usk𝑖, ID,S𝑖)

(b) Our scenario of ��-�� for set intersection.
The evaluator learns the function evaluation and
nothing else about the clients’ inputs.

Figure 3.1. Fundamental difference between a private set intersection (���) protocol
and our multi-client functional encryption (��-��) schemes for set intersection.

the suspects matching the two profiles, while learning nothing about the
other visitors of the concert or other people that received an unusual amount
of money. Another use case is privacy-preserving data mining, such as the
computation of various set similarity scores. For example, by determining
the cardinality of a set intersection we can compute the Jaccard index (i.e.,
|S1 ∩S2|∕|S1 ∪S2| = |S1 ∩S2|∕(|S1|+|S2|−|S1 ∩S2|)), without requiring
the evaluator to learn the clients’ sets themselves. Finally, for the use case
of privately sharing context of an indicator of compromise [cfs⁺17], our
construction for set intersection with data transfer or projection can be used.

To asses the practicability of our constructions, we implemented several
of our proposed schemes. Our 2c-fe constructions are quite efficient: De-
termining the cardinality of the set intersection of two encrypted sets is as
fast as any plaintext solution and determining the set intersection of sets of
100 thousand elements in size can be done in just under a second.

3.2 Preliminaries

A Bloom filter [Blo70] is a data structure that can be used for efficient set
membership testing. An (𝑚, 𝑘) Bloom filter consists of a bit string bs of
length 𝑚 (indexed using bs[ℓ] for 1 ≤ ℓ ≤ 𝑚) and is associated with 𝑘 in-
dependent hash functions, ℎ𝑖 : {0, 1}∗ → {1, … , 𝑚} for 1 ≤ 𝑖 ≤ 𝑘. The
Bloom filter is initialized with the bit string of all zeros. To add an element 𝑥
to the Bloom filter, we hash the element for each of the 𝑘 hash functions
to obtain ℎ𝑖(𝑥) and set the ℎ𝑖(𝑥)th position in the bit string bs to 1, i.e.,
bs[ℎ𝑖(𝑥)] = 1 for 1 ≤ 𝑖 ≤ 𝑘. To test the membership of an element 𝑥∗, we
simply check if ℎ𝑖(𝑥∗) = 1 for 1 ≤ 𝑖 ≤ 𝑘.

19

Chapter 3. Set Intersections: Two-Client and Multi-client Constructions

Note that Bloom filters have no false negatives for membership test-
ing, but may have false positives. Furthermore, we point out that the hash
functions ℎ𝑖 do not necessary need to be cryptographic hash functions.

3.3 Related Work

While the term mc-fe [ggg⁺14] only recently gained traction, a couple of mc-
fe schemes have already been proposed several years ago. For example, for
the functionality of summing inputs from distinct clients, Shi et al. [scr⁺11]
proposed a construction. Around the same time, Lewko and Waters [lw11]
proposed a multi-authority attribute-based encryption (ma-abe) scheme.
Their construction can also be seen as mc-fe since the evaluated function
only outputs a plaintext if the user has the right inputs (i.e., attributes) to the
function (i.e., policy). More recently, mc-fe constructions for computing vec-
tor equality [kpe⁺17] and inner products [cdg⁺18; abk⁺19] have been proposed.
However, no mc-fe schemes for functionalities related to set operations have
been proposed.

Despite being interactive by definition, psi protocols are functionality-
wise the closest related to our constructions. While the concept of psi dates
from the mid-80s [Mea86], renewed interest in psi protocols started in the
beginning of the new millennium [fnp04; ks05]. A comprehensive overview
of various psi constructions and techniques is given by Pinkas, Schneider,
and Zohner [psz14]. While most psi constructions achieve their functionality
through techniques different from ours, Bloom filters have been used by
interactive psi protocols before [Ker12b; dcw13].

The type of psi protocols that are most related to our mc-fe schemes are
termed outsourced psi [Ker12a; Ker12b; kmr⁺14; lnz⁺14; atd15; zx15; atd16].
In outsourced psi, a client may upload its encrypted set to a service provider,
which will then engage in a psi protocol on the client’s behalf. Hence, in
outsourced psi the other client still learns the outcome of the evaluated set
intersection, while in our definition of mc-fe for set intersection we require
a dedicated evaluator to learn this outcome. This difference is typified by the
difference in homomorphic encryption and functional encryption (fe): While
both techniques allow us to compute over encrypted data, with homomorphic
encryption we learn the encrypted output of the computation while with
fe we learn the plaintext result. The two-client set intersection protocol
by Kerschbaum [Ker12a] is a notable exception to regular outsourced psi:
In that construction the service provider also learns the outcome of the
set intersection. However, besides their limited scope of considering only
two-client set intersection, they consider a weaker security notion. Their

20

3.4. Multi-client Functional Encryption for Set Operations

construction is only collusion resistant if the two clients collude against
the evaluator, not if the evaluator colludes with one client against the other
client (something we show impossible in Section 3.5.1). As a consequence,
their construction cannot be extended to a secure scheme in the multi-client
case. Moreover, their proposed construction is malleable and thus does not
provide any form of integrity.

3.4 Multi-client Functional Encryption for Set Operations

An mc-fe [ggg⁺14] scheme for a specific set operation consists of 𝑛 par-
ties, termed clients. Each of these clients encrypts their own set. Another
party, which we term evaluator, having a decryption key and receiving these
encrypted sets, can evaluate an 𝑛-ary set operation 𝑓 over the clients’ inputs.

To run the same functionality 𝑓 multiple times without the possibility
for the evaluator to mix old clients’ inputs with newly received inputs, mc-fe
schemes associate an identifier ID with every ciphertext. An evaluator is only
able to evaluate the function if all ciphertexts use the same identifier ID.

The mc-fe schemes we propose support only a single functionality 𝑓
(e.g., set intersection). Therefore, our schemes do not need to define a key
generation algorithm to create a decryption key for each of the functional-
ities. Instead, we can suffice with the creation of a decryption key for the
single functionality in Setup. This type of fe schemes is commonly referred
to as single key [klm⁺18]. However, to avoid confusion in our multi-client
case—where we still have a key for each client—we refer to this setting as
single evaluation key mc-fe.

Definition 7 (Multi-client Functional Encryption for Set Operations). A sin-
gle evaluation key mc-fe scheme for set operation 𝑓, consists of the following
three polynomial time algorithms.

Setup(1𝜆, 𝑛) → (pp, esk,usk1, … ,usk𝑛). On input of the security parame-
ter 𝜆 and the number of clients, the algorithm outputs the public parame-
ters pp, the evaluator’s evaluation key esk, and the clients’ secret keys usk𝑖
for each client 1 ≤ 𝑖 ≤ 𝑛. The public parameters are implicitly used in the
other algorithms.

Encrypt(usk𝑖, ID,S𝑖) → ctID,𝑖. For a client 𝑖 to encrypt a setS𝑖 for identifier ID,
the client uses its secret key usk𝑖 and outputs the ciphertext ctID,𝑖.

Eval(esk, ctID,1, … , ctID,𝑛) → 𝑓(S1, … ,S𝑛). An evaluator having the evalua-
tion key esk and a ciphertext for identifier ID from every client, outputs the
function evaluation 𝑓(S1, … ,S𝑛).

21

Chapter 3. Set Intersections: Two-Client and Multi-client Constructions

3.4.1 Schemes Without an Evaluator Key

While having schemes with an evaluation secret key might be desirable in
some cases, in other cases it is desirable that anyone may learn the outcome
of the function, e.g., similar to property-revealing encryption [pr12; blr⁺15].
However, observe that we can always adapt an mc-fe scheme without an eval-
uation key to the above defined single evaluation key mc-fe by using public
key encryption. Indeed, instead of sending the ciphertexts resulting from
the mc-fe scheme directly to the evaluator, we simply require the clients to
encrypt these ciphertexts again, but now using the public key of the evaluator.
This ensures that only the evaluator with the corresponding private key (used
as an evaluation key) can evaluate the functionality 𝑓. An alternative solution
is to require the clients to send their ciphertexts over a secure channel to the
evaluator. This way, no other party has access to the ciphertexts.

We conclude that, since schemes without an evaluation key can be turned
into a single evaluation key mc-fe scheme, mc-fe schemes without an eval-
uation key are at least as powerful as single evaluation key mc-fe. For this
reason, we construct only mc-fe schemes without an evaluation key and stress
that our resulting schemes can thus be used both with and without an evalua-
tion key.

3.5 Security

We use the indistinguishability-based security notion from Goldwasser et al.
[ggg⁺14, § 3.2] for mc-fe. In this notion, the adversary’s goal is to decidewhich
of the two, by the adversary chosen, plaintexts is encrypted. The notion allows
the adversary to adaptively query for the encryption of plaintext, while it can
locally evaluate the received ciphertext using Eval(ct1, … , ct𝑛). Additionally,
the adversary is allowed to statically corrupt the clients by announcing the
corrupted clients before it receives the public parameters.

The adversary can thus be seen as a malicious evaluator that tries to learn
information about the ciphertexts, other than what it should be allowed
according to the functionality of the scheme. In its attempts, the malicious
evaluator may collude with the clients in an effort to learn more about other
clients’ ciphertexts.

The security game for our mc-fe schemes without an evaluation key is
almost identical to Definition 6 in Chapter 2. The sole difference of the
security game for a scheme without an evaluation key is that the adversary
cannot query for other evaluation keys (because there are none). Note that,
since we are operating on sets, we require the adversary to send two equally
sized sets S∗

𝑖,0, S∗
𝑖,1, i.e., |S∗

𝑖,0| = |S∗
𝑖,1|, for every uncorrupted client 𝑖 ∈ 𝐼.

22

3.6. Two-Client Constructions for Set Intersections

Note that by using this definition, the ciphertext does not need to hide the
set size. This is similar to the semantic security notion where the ciphertext
does not need to hide the plaintext size. If this is undesirable, fixed-sized
sets can easily be obtained by adding dummy elements to each set.

3.5.1 Corruptions in Two-Client Functional Encryption

We observe that any single evaluation key 2c-fe scheme can never be secure
against corruptions for non-trivial functionalities. To see why this is the case,
consider a 2c-fe scheme for the functionality 𝑓(𝑥, 𝑦). Assume, without loss of
generality, that the adversary corrupts the clientwhich determines the input 𝑦.
By definition of the game for adaptive ind-security of mc-fe, the adversary
submits two values 𝑥0 and 𝑥1 to the challenger. For the challenge inputs to
be allowed, it is required that 𝑓(𝑥0, ⋅) = 𝑓(𝑥1, ⋅), i.e., we require 𝑓𝑥0

(𝑦) =
𝑓𝑥1

(𝑦) for all possible 𝑦. So, unless 𝑓 is a constant function in 𝑦, we have to
require that 𝑥0 = 𝑥1, for which it is trivial to see that the challenge will be
indistinguishable.

Generalizing the result, we see that in an mc-fe scheme for 𝑛 clients, at
least two clients need to remain uncorrupted. Phrased differently, this means
that for mc-fe with 𝑛 clients, we can allow for at most 𝑛 − 2 corruptions.

The corruption of a client can also be seen as appointing a client as the
evaluator. This means that in a two-client case, none of the clients can be the
evaluator, as this would always lead to an insecure scheme since the evaluator
is able to determine the other client’s input by altering its own input.

3.6 Two-Client Constructions for Set Intersections

We propose several 2c-fe schemes for various set operations: computing the
cardinality of the set intersection, computing the set intersection itself, com-
puting the set intersection with data transfer or projection, and computing
the set intersection only if a threshold is reached. We discuss constructions
supporting more than two clients in Section 3.7.

3.6.1 Two-Client Set Intersection Cardinality

To compute the cardinality of a set intersection from two clients, we can
suffice with a simple scheme using a pseudorandom function (prf) (see
Definition 1). The two clients encrypt each set element individually using a
prf under the same key. Since a prf has a deterministic output, the evaluator
can now use any algorithm for determining the cardinality of the intersection,

23

Chapter 3. Set Intersections: Two-Client and Multi-client Constructions

even algorithms that only operate on plaintext data (e.g., see [dk11] for an
overview).

Setup(1𝜆) → (pp,usk1,usk2). Let Φ = {𝜙𝜅} be a prf ensemble for func-
tions 𝜙𝜅 : ℐ𝒟 × {0, 1}∗ → {0, 1}≥𝜆. Pick a prf 𝜙msk. The public parameters
are pp = (Φ) and the clients’ keys usk1 = usk2 = (𝜙msk).

Encrypt(usk𝑖, ID,S𝑖) → ctID,𝑖. For a client 𝑖 to encrypt its set S𝑖 for an
identifier ID ∈ ℐ𝒟, the client computes the prf for each set element 𝑥𝑗 ∈ S𝑖.
It outputs the set ctID,𝑖 = { 𝜙msk(ID, 𝑥𝑗) ∣ 𝑥𝑗 ∈ S𝑖 }.

Eval(ctID,1, ctID,2) → |S1 ∩ S2|. To evaluate the cardinality of the set inter-
section, output ∣ctID,1 ∩ ctID,2∣.

We can use a block cipher, keyed-hash function, hash-based message
authentication code, or a similar function as the prf.

Theorem 1. The two-client set intersection cardinality scheme defined above is
secure under the assumption that the prf is indistinguishable from a random
function.

Proof. This directly follows from the security of the prf. Note that the evalu-
ator only learns whether two set elements 𝑥1,𝑗 ∈ S1 and 𝑥2,𝑗′ ∈ S2 are equal
or not. Nothing else is revealed about the set elements 𝑥1,𝑗 and 𝑥2,𝑗′.

3.6.2 Two-Client Set Intersection

In case of two-client set intersection, we need not only to determine whether
two encrypted set elements are the same, but also learn the plaintext set
element if they are the same. We achieve this by adapting our construction
for two-client set intersection cardinality with a combination of convergent
encryption [dab⁺02] (cf.message-locked encryption [bkr13]) and secret shar-
ing: We encrypt the set element under a key derived from the message itself
and secret share the encryption key. If both clients encrypted the same mes-
sage, the decryption key can be recovered from the secret shares and the
ciphertext can be decrypted. To encrypt the set element itself, we use an
authenticated encryption (ae) scheme [bn00].

Setup(1𝜆) → (pp,usk1,usk2). Let ⟨𝑔⟩ = 𝔾 be a group of prime order 𝑝 and
let Φ = {𝜙𝜅} be a prf ensemble for functions 𝜙𝜅 : ℐ𝒟 × {0, 1}∗ → 𝔾 and ��
an ae scheme. Define a mapping from the group to the key space of the ae
scheme, 𝐻: 𝔾 → 𝒦��. Pick a prf 𝜙msk and pick 𝜎1

𝑅← ℤ𝑝 to set 𝜎2 = 1 − 𝜎1
(mod 𝑝). The public parameters are pp = (𝔾, Φ, 𝐻,��) and the clients’
keys usk1 = (𝜙msk, 𝜎1) and usk2 = (𝜙msk, 𝜎2).

24

3.6. Two-Client Constructions for Set Intersections

Encrypt(usk𝑖, ID,S𝑖) → ctID,𝑖. For a client 𝑖 to encrypt its set S𝑖 for an
identifier ID ∈ ℐ𝒟, the client computes the prf for each set element 𝑥𝑗 ∈ S𝑖.
It outputs the set of tuples {(ctID,𝑖,𝑗,1, ctID,𝑖,𝑗,2)}1≤𝑗≤|S𝑖|,

ctID,𝑖 = { (𝑘 𝜎𝑖
ID,𝑗,��.Enc𝐻(𝑘ID,𝑗)(𝑥𝑗)) ∣ 𝑘ID,𝑗 = 𝜙msk(ID, 𝑥𝑗), 𝑥𝑗 ∈ S𝑖 } .

Eval(ctID,1, ctID,2) → S1 ∩ S2. For all ctID,1,𝑗,2 = ctID,2,𝑘,2 (and hence 𝑥 =
𝑥1,𝑗 = 𝑥2,𝑘), determine

𝑘ID,𝑥 = ctID,1,𝑗,1 ⋅ ctID,2,𝑘,1

= 𝜙msk(ID, 𝑥)𝜎1 ⋅ 𝜙msk(ID, 𝑥)𝜎2

= 𝜙msk(ID, 𝑥)𝜎1+𝜎2

= 𝜙msk(ID, 𝑥),

to decrypt ctID,𝑖,𝑗,2 using ��.Dec𝐻(𝑘ID,𝑥)(ctID,𝑖,𝑗,2) for 𝑖 = 1 or for 𝑖 = 2.

Theorem 2. The two-client set intersection scheme defined above is secure under
the decisional Diffie–Hellman (ddh) assumption, a secure prf, and a secure ae
scheme.

Proof. We construct an algorithm that is able to break the ddh problem if
a probabilistic polynomial time (p.p.t.) adversary 𝒜 has a non-negligible
advantage in winning the game.

Setup The challenger ℬ receives the ddh tuple (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑇) from the
group 𝔾 of prime order 𝑝. It defines a prf ensemble Φ = {𝜙𝜅} and map-
ping 𝐻: 𝔾 → 𝒦�� according to the scheme. The public parameters pp =
(𝔾, Φ, 𝐻,��) are sent to the adversary. The challenger indirectly sets 𝜎1 = 𝑎
and 𝜎2 = 1 − 𝑎, i.e., 𝑔𝜎1 = 𝑔𝑎 and 𝑔𝜎2 = 𝑔 ⋅ (𝑔𝑎)−1.

Query Upon receiving an allowed encryption query for (𝑖, ID,S), the chal-
lenger encrypts the elements of the set S as follows. It models the prf as
follows: On input (ID, 𝑥𝑗), output 𝑔𝑟ID,𝑥𝑗 , where, if the input has not been
queried before, 𝑟ID,𝑥𝑗

𝑅← ℤ𝑝. The challenger encrypts an element 𝑥𝑗 ∈ S as

ctID,𝑖,𝑗 = {((𝑔𝑎)𝑟ID,𝑥𝑗,��.Enc𝑘(𝑥𝑗)) if 𝑖 = 1;
((𝑔 ⋅ (𝑔𝑎)−1)𝑟ID,𝑥𝑗,��.Enc𝑘(𝑥𝑗)) if 𝑖 = 2,

where 𝑘 = 𝐻(𝑔𝑟ID,𝑥𝑗). It outputs the encrypted set ctID,𝑖 to the adversary.

Challenge An allowed challenge request from the adversary for the sets S∗
1,0,

S∗
1,1, S∗

2,0, and S∗
2,1 with identifier ID∗, is answered by the challenger by

25

Chapter 3. Set Intersections: Two-Client and Multi-client Constructions

sending the encrypted sets S∗
1,𝑏 and S∗

2,𝑏 back to the adversary. An ele-
ment 𝑥𝑗 ∉ (S1,𝑏 ∩ S2,𝑏) is encrypted as

ctID,𝑖,𝑗 = {(𝑇
𝑟ID∗,𝑥𝑗,��.Enc𝑘(𝑥𝑗)) if 𝑖 = 1;

((𝑔𝑏 ⋅ 𝑇 −1)
𝑟ID∗,𝑥𝑗,��.Enc𝑘(𝑥𝑗)) if 𝑖 = 2,

where 𝑘 = 𝐻((𝑔𝑏)𝑟ID,𝑥𝑗). Note that this indirectly sets the output of the
prf to 𝑔

𝑏𝑟ID∗,𝑥𝑗 for 𝑥𝑗 ∉ (S1,𝑏 ∩ S2,𝑏). The elements 𝑥𝑗 ∈ (S1,𝑏 ∩ S2,𝑏) are
encrypted as in the query phase.

If the adversary 𝒜 outputs a correct guess 𝑏′ = 𝑏, the challenger outputs
the guess that 𝑇 = 𝑔𝑎𝑏, otherwise, it outputs its guess 𝑇 ∈𝑅 𝔾.

3.6.3 Two-Client Set Intersection with Data Transfer or Projection

The two-client set intersection scheme described above can be extended into
a two-client set intersection scheme with data transfer (analogous to psi with
data transfer [dt10; jl10]). Instead of only encrypting the set element 𝑥𝑗
itself, ctID,𝑖,𝑗,2 = ��.Enc𝑘(𝑥𝑗), we can also choose to encrypt both the element
itself and the data associated to the set element 𝜌(𝑥𝑗). The security of the
scheme is the same as before since we rely on the security of the ae scheme.

Moreover, the proposed scheme also allows for a two-client set intersec-
tion projection scheme (analogous to psi with projection [cfs⁺17]). We con-
struct such a scheme by encrypting only the associated data 𝜌(𝑥𝑗), ctID,𝑖,𝑗,2 =
��.Enc𝑘(𝜌(𝑥𝑗)), not the set element 𝑥𝑗 itself. Security follows from the fact
that the ae decryption key 𝑘 = 𝐻(𝜙msk(ID, 𝑥𝑗)) does not reveal any informa-
tion about the set element𝑥𝑗, assuming the security of the used prf. However,
the evaluator does learn that the projections of both clients correspond to
the same set element.

Lastly, we can also extend the scheme by encrypting the ciphertexts
of any other mc-fe scheme to achieve even more advanced functionality.
For example, we could encrypt the ciphertext of an mc-fe scheme for sum-
ming [scr⁺11] as the associated data. With such a scheme, we directly achieve
a non-interactive variant of a recently proposed psi protocol [ikn⁺19].

3.6.4 Two-Client Threshold Set Intersection

To allow the evaluator to learn the cardinality of the intersection, but only
the set elements in the intersection if the clients have at least 𝑡 set elements
in common, we propose a two-client threshold set intersection scheme.
We achieve this by encrypting the share of the decryption key for the ae

26

3.6. Two-Client Constructions for Set Intersections

ciphertext 𝑘 𝜎𝑖
ID,𝑗 using another encryption key. This newly added encryption

key can only be obtained by the evaluator if the clients have at least 𝑡 set
elements in common.

Although the construction is based on the previous scheme, the precise
construction is quite technical. We therefore state the complete scheme
below.

Setup(1𝜆, 𝑡) → (pp,usk1,usk2). Let �� be an ae scheme and ⟨𝑔⟩ = 𝔾
be a group and 𝔽𝑝 be a field, both of prime order 𝑝. Let Φ = {𝜙𝜅} and
Ψ = {𝜓𝜅} be prf ensembles for functions 𝜙𝜅 : ℐ𝒟 × {0, 1}∗ → 𝔾 and
𝜓𝜅 : ℐ𝒟×{0, 1}∗ → 𝔽𝑝, respectively. Define amapping from the group to the
key space of the ae scheme, 𝐻: 𝔾 → 𝒦��. Pick three prfs 𝜙 ∈ Φ, 𝜓1, 𝜓2 ∈ Ψ
and 𝜎1

𝑅← ℤ𝑝, 𝜌1
𝑅← ℤ𝑝−1, setting 𝜎2 = 1 − 𝜎1 (mod 𝑝) and 𝜌2 = 1 − 𝜌1

(mod 𝑝 − 1).
The public parameters are pp = (𝔾, Φ, Ψ, 𝐻,��, 𝑡) and the clients’ secret

keys usk1 = (𝜙, 𝜓1, 𝜓2, 𝜎1, 𝜌1) and usk2 = (𝜙, 𝜓1, 𝜓2, 𝜎2, 𝜌2).

Encrypt(usk𝑖, ID,S𝑖) → ctID,𝑖. For a client 𝑖 to encrypt its set S𝑖 for an
identifier ID ∈ ℐ𝒟, the client computes the prf for each set element 𝑥𝑗 ∈ S𝑖.
It defines the (𝑡 − 1)th degree polynomial 𝑓ID by setting the coefficients 𝑐𝑖 =
𝜓2(ID, 𝑖), for 0 ≤ 𝑖 < 𝑡, to obtain the polynomial 𝑓ID(𝑥) = 𝑐𝑡−1𝑥𝑡−1 + ⋯ +
𝑐1𝑥 + 𝑐0.

The client outputs the set

ctID,𝑖 = { (𝑘ID,𝑗,2, 𝑓(𝑘ID,𝑗,2)𝜌𝑖,��.Enc𝐻(𝑐0)(𝑘
𝜎𝑖
ID,𝑗,1),��.Enc𝐻(𝑘ID,𝑗,1)(𝑥𝑗))

∣ 𝑘ID,𝑗,1 = 𝜙(ID, 𝑥𝑗), 𝑘ID,𝑗,2 = 𝜓1(ID, 𝑥𝑗), 𝑥𝑗 ∈ S𝑖 } .

Eval(ctID,1, ctID,2) → (|S1 ∩ S2|, { 𝑥𝑗 ∣ 𝑥𝑗 ∈ S1 ∩ S2, |S1 ∩ S2| ≥ 𝑡 }). The
evaluation algorithm consists of two stages; the second stage is only executed
if |S1 ∩ S2| ≥ 𝑡.

1. To determine the cardinality of the set intersection |S1 ∩ S2|, the
evaluator counts the number of times a value 𝑘ID,𝑗,2 occurs both in ctID,1
and ctID,2.

2. If |S1 ∩ S2| ≥ 𝑡, the evaluator uses Lagrange interpolation to com-
pute the value 𝑐0 = 𝑓(0). It can do so by taking 𝑡 distinct tuples
(𝑘ID,𝑗,2, 𝑓(𝑘ID,𝑗,2)), where 𝑓(𝑘ID,𝑗,2) = 𝑓(𝑘ID,𝑗,2)𝜌1 ⋅ 𝑓(𝑘ID,𝑗,2)𝜌2. Now,
when the secret 𝑐0 has been recovered from the shares, the evaluator
can use it to decrypt the values ��.Enc𝐻(𝑐0)(𝑘

𝜎𝑖
ID,𝑗,1). So, the evalua-

tor obtains 𝑘𝜎𝑖
ID,𝑗,1 for every set element in 𝑥𝑗 ∈ S𝑖 if |S1 ∩ S2| ≥ 𝑡.

Observe that for the elements in the intersection, the evaluator has

27

Chapter 3. Set Intersections: Two-Client and Multi-client Constructions

both 𝑘𝜎1
ID,𝑗,1 and 𝑘𝜎2

ID,𝑗,1, and can compute 𝑘ID,𝑗,1 = 𝑘𝜎1
ID,𝑗,1 ⋅ 𝑘𝜎2

ID,𝑗,1. Fi-
nally, using 𝐻(𝑘ID,𝑗,1), it can decrypt ��.Enc𝐻(𝑘ID,𝑗,1)(𝑥𝑗) to obtain 𝑥𝑗 ∈
S1 ∩ S2.

Since the construction above builds upon the set intersection scheme,
which can be modified into a set intersection with data transfer scheme or a
set intersection with projection scheme, we similarly obtain both threshold
set intersection with data transfer and projection.

Theorem 3. The two-client threshold set intersection scheme defined above is
secure under the ddh assumption, a secure prf, and a secure ae scheme.

Proof. We only have to prove that the values 𝑘𝜎𝑖
ID,𝑗,1 can only be obtained

if |S1 ∩ S2| ≥ 𝑡, as the rest of the proof directly follows from Theorem 2.
Since the values 𝑘𝜎𝑖

ID,𝑗,1 are encrypted using an ae scheme using the key𝐻(𝑐0),
the values are only know to the evaluator if it has the key𝐻(𝑐0) (under the as-
sumption of a secure ae scheme). The fact that 𝑐0 (and hence𝐻(𝑐0)) can only
be obtained from the secret shares follows from the information-theoretic se-
curity of Shamir’s secret sharing scheme if a random polynomial 𝑓ID was used.
Note that the (𝑡−1)th degree polynomial is random under the assumption of
a secure prf. Finally, using a similar argument as in Theorem 2, we can show
that, under the ddh assumption, 𝑓(𝑘ID,𝑗,2)𝜌1 or 𝑓(𝑘ID,𝑗,2)𝜌2 does not reveal
any information about 𝑓(𝑘ID,𝑗,2) if 𝑓(𝑘ID,𝑗,2)𝜌2 or 𝑓(𝑘ID,𝑗,2)𝜌1, respectively, is
unknown.

3.7 Multi-client Constructions for Set Intersections

While the 2c-fe constructions from Section 3.6 could be used in amulti-client
case, this would leak information about each pair of sets. For the same rea-
son, deterministic encryption cannot be used in secure mc-fe constructions,
which makes it much harder to develop efficient mc-fe schemes.

3.7.1 Multi-client Set Intersection Cardinality

We construct an mc-fe scheme for testing the set intersection using only
a hash function and secret sharing. The proposed scheme incurs no addi-
tional leakage and is proven adaptive ind-secure. While our scheme has an
evaluation algorithm which does not rely on heavy cryptographic machinery
and runs in polynomial time (for a fixed number of clients 𝑛), it is not very
efficient. The running time of the evaluation algorithm grows in the product
of the cardinality of the individual clients’ set size. However, for relatively

28

3.7. Multi-client Constructions for Set Intersections

small sets or a small number of clients this scheme might still be efficient
enough to use in practice.

Setup(1𝜆, 𝑛) → (pp,usk1, … ,usk𝑛). Let ⟨𝑔⟩ = 𝔾 be a group of prime
order 𝑝 and let 𝐻: ℐ𝒟 × {0, 1}∗ → 𝔾 be a hash function. Create random
shares of 0 by picking 𝜎𝑖

𝑅← ℤ𝑝, for all 2 ≤ 𝑖 ≤ 𝑛, and setting 𝜎1 = − ∑𝑛
𝑖=2 𝜎𝑖

(mod 𝑝). The public parameters are pp = (𝐻) and the clients’ keys usk𝑖 =
(𝜎𝑖).

Encrypt(usk𝑖, ID,S𝑖) → ctID,𝑖. For a client 𝑖 to encrypt its set S𝑖 using an
identifier ID ∈ ℐ𝒟, the client encrypts each set element 𝑥𝑗 ∈ S𝑖 individually.
It outputs the set ctID,𝑖 = { 𝐻(ID, 𝑥𝑗)

𝜎𝑖 ∣ 𝑥𝑗 ∈ S𝑖 } .

Eval(ctID,1, … , ctID,𝑛) → ∣⋂𝑛
𝑖=1 S𝑖∣. For each 𝑛-tuple (𝑐1, … , 𝑐𝑛) ∈ ctID,1 ×

⋯ × ctID,𝑛, the evaluator evaluates ∏𝑛
𝑖=1 𝑐𝑖

?= 1. The evaluator outputs the
count for the number of times the expression above evaluates to true.

We prove the construction secure under selective corruptions, but we
note that it is also possible to achieve a proof under dynamic corruptions
(although less tight) by adapting the proofs from Shi et al. [scr⁺11].

Theorem 4. The improved multi-client set intersection cardinality scheme defined
above is secure up to (𝑛−2) corruptions under the ddh assumption in the random
oracle model (rom).

Proof. Let 𝒜 be a p.p.t. adversary playing the adaptive ind-security game
for mc-fe. We show how to use 𝒜 as a distinguisher for a ddh tuple, win-
ning with a non-negligible advantage if 𝒜 has a non-negligible advantage in
winning the security game.

Random Oracle On input of a tuple (ID, 𝑥𝑗) the oracle checks if it has
answered the query before. If not, it picks a value 𝛽ID,𝑥𝑗

𝑅← ℤ𝑝. Next, the
challenger ℬ guesses whether the query is for the challenge ID. If so, the
oracle outputs (𝑔𝑏)𝛽ID,𝑥𝑗 , otherwise, it outputs 𝑔𝛽ID,𝑥𝑗 . If the guess turns out
to be wrong later, ℬ can simply abort the game.

Corruptions The adversary 𝒜 announces the set of uncorrupted and cor-
rupted clients, 𝐼 and ̄𝐼, respectively.

Setup For 𝑖 ∈ ̄𝐼, the challenger ℬ picks 𝜎𝑖
𝑅← ℤ𝑝 and sends the values to the

adversary 𝒜. Let 𝑖′ ∈ 𝐼, for 𝑖 ∈ 𝐼 ∖ {𝑖′}, ℬ indirectly sets 𝜎𝑖 = 𝑎 ⋅ 𝛼𝑖, where
𝛼𝑖

𝑅← ℤ𝑝, by setting 𝑔𝜎𝑖 = (𝑔𝑎)𝛼𝑖. For 𝑖′, it indirectly sets 𝜎𝑖′ = − ∑𝑖≠𝑖′ 𝜎𝑖,

𝑔𝜎𝑖′ = ∏
𝑖∈ ̄𝐼

𝑔−𝜎𝑖 ⋅ ∏
𝑖∈𝐼,𝑖≠𝑖′

(𝑔𝑎)−𝛼𝑖.

29

Chapter 3. Set Intersections: Two-Client and Multi-client Constructions

Query To answer an encryption query S𝑖 for an uncorrupted client 𝑖 ∈ 𝐼,
the challenger uses the oracle to obtain { 𝛽ID,𝑥𝑗

∣ 𝑥𝑗 ∈ S𝑖 } and construct the

ciphertext as ctID,𝑖 = { (𝑔𝜎𝑖)𝛽ID,𝑥𝑗 ∣ 𝑥𝑗 ∈ S𝑖 }.

Challenge Upon receiving the challenge sets { (S∗
𝑖,0,S∗

𝑖,1) ∣ 𝑖 ∈ 𝐼 } and
an ID∗ from the adversary, the challenger picks 𝑏 𝑅← {0, 1}. The challenger
returns the ciphertexts

ctID∗,𝑖′ = { ∏
𝑖∈ ̄𝐼

(𝑔𝑏)
−𝜎𝑖⋅𝛽ID∗,𝑥𝑗 ⋅ ∏

𝑖∈𝐼,𝑖≠𝑖′

𝑇
−𝛼𝑖⋅𝛽ID∗,𝑥𝑗 ∣ 𝑥𝑗 ∈ S∗

𝑖,𝑏 } and

ctID∗,𝑖 = { 𝑇
𝛼𝑖𝛽ID∗,𝑥𝑗 ∣ 𝑥𝑗 ∈ S∗

𝑖,𝑏 } for 𝑖 ≠ 𝑖′.

Note that if 𝑇 = 𝑔𝑎𝑏, the ciphertext is distributed properly according the
scheme. If 𝑇 ∈𝑅 𝔾, the challenger returns a ciphertext of a randomly
distributed set element. So, the challenger ℬ guesses that 𝑇 = 𝑔𝑎𝑏 if 𝒜
correctly guessed 𝑏′ = 𝑏 and otherwise, ℬ guesses that 𝑇 ∈𝑅 𝔾.

We remark that while the security of the two-client schemes could be
proven in the standard model, our multi-client constructions can only be
proven in the rom. The difference in the constructions is that in the two-client
case, no corruptions are taken place, and thus we can use a programmable
prf instead of a programmable random oracle.

3.7.2 Efficient Multi-client Set Intersection Cardinality

A drawback of the multi-client set intersection cardinality scheme might be
that the computational complexity for the evaluator grows quickly in the
total number of set elements (i.e., ∏𝑛

𝑖=1|S𝑖|). To address this problem, we
propose an alternative scheme using Bloom filters. In this scheme, we first
combine the Bloom filter representation of every client’s set in the encrypted
domain, resulting in an encrypted Bloom filter representing the intersection
of all clients’ sets. Next, the evaluator uses the encrypted set elements of
any client to determine the cardinality of the intersection. This method
used by the evaluator to determine the cardinality of the intersection can be
seen as computing ∣S𝑖 ∩ (⋂𝑛

𝑖=1 S𝑖)∣ = |⋂𝑛
𝑖=1 S𝑖|. The theoretical efficiency

of 𝒪(𝑛 + min𝑛
𝑖=1|S𝑖|) ciphertext operations is much better than the other

scheme. However, the proposed scheme is only secure if no corruptions are
taking place.

Setup(1𝜆, 𝑛, 𝑚, 𝑘) → (pp,usk1, … ,usk𝑛). Let ⟨𝑔⟩ = 𝔾 be a group of prime
order 𝑝 and let BF be a specification for an (𝑚, 𝑘) Bloom filter. Let Φ = {𝜙𝜅}
be a prf ensemble for functions 𝜙𝜅 : {0, 1}∗ → {0, 1}≥𝜆 and let 𝐻: ℐ𝒟 ×

30

3.7. Multi-client Constructions for Set Intersections

{0, 1}∗ → 𝔾 be a hash function. Pick a prf 𝜙 ∈ Φ. Additionally, pick for
1 ≤ 𝑖 ≤ 𝑛, values 𝑐𝑖

𝑅← ℤ𝑝 and define the 𝑛-degree polynomial 𝑓(𝑥) =
𝑐𝑛𝑥𝑛 +⋯+𝑐1𝑥 over the field 𝔽𝑝. The public parameters are pp = (BF, Φ, 𝐻)
and the clients’ secret keys are usk𝑖 = (𝜙, 𝑓(𝑖), 𝑓(𝑛+𝑖)) for 1 ≤ 𝑖 ≤ 𝑛. Note
that every client receives the same prf 𝜙, but different secret shares 𝑓(𝑖)
and 𝑓(𝑛 + 𝑖).
Encrypt(usk𝑖, ID,S𝑖) → (ctID,𝑖,bsS , ctID,𝑖,S). First, the client initializes the
Bloom filter to obtain bsS . Next, it adds its encrypted set elements, 𝜙(𝑥𝑗)
for 𝑥𝑗 ∈ S𝑖, to the Bloom filter. For each 1 ≤ ℓ ≤ 𝑚, the client sets 𝑟𝑖,ℓ

𝑅← ℤ𝑝,
if bsS [ℓ] = 0, and 𝑟𝑖,ℓ = 0, otherwise. The client encrypts the Bloom filter
for bsS as the ordered set

ctbsS = { 𝐻(ID, ℓ)𝑓(𝑖) ⋅ 𝑔𝑟𝑖,ℓ ∣ 1 ≤ ℓ ≤ 𝑚 } .

Additionally, the client initializes a newbit stringbs𝑗 for each element𝑥𝑗 ∈ S𝑖.
It encrypts each element 𝑥𝑗 and adds 𝜙(𝑥𝑗) to the Bloom filter for bs𝑗. Let 𝑡𝑗
denote the Hamming weight (i.e., the number of 1s) of the resulting bit
string bs𝑗. For the resulting bit string bs𝑗 pick 𝑟𝑖,𝑗,ℓ

𝑅← ℤ𝑝 for 1 ≤ ℓ ≤ 𝑚.
Additionally, it sets 𝜌𝑖,𝑗,ℓ

𝑅← ℤ𝑝 if bs𝑗[ℓ] = 0, and 𝜌𝑖,𝑗,ℓ = 𝑡𝑗 ⋅ 𝑟𝑖,𝑗,ℓ otherwise.
It encrypts the Bloom filter for bs𝑗 as

ctbs𝑗
= ({ 𝐻(ID, ℓ)𝑓(𝑛+𝑖) ⋅ 𝑔𝜌𝑖,𝑗,ℓ, 𝑔𝑟𝑖,𝑗,ℓ ∣ 1 ≤ ℓ ≤ 𝑚 }) .

Finally, the client outputs the ciphertext (ctbsS , { ctbs𝑗
∣ 𝑥𝑗 ∈ S𝑖 }) .

Eval(ctID,1, … , ctID,𝑛) → ∣⋂𝑛
𝑖=1 S𝑖∣. Since the clients’ ciphertext are encryp-

tions of the individual set elements, we can determine a client with the
smallest (encrypted) set. Let 𝛾 be such a client. Now, for 1 ≤ ℓ ≤ 𝑚,
compute the partial Lagrange interpolation

𝑎ℓ =
𝑛

∏
𝑖=1

(ctID,𝑖,bsS [ℓ])
Δ{1,…,𝑛,𝑛+𝛾},𝑖 .

Set 𝑑 = 0. Next, to determine if an encrypted set element 𝑥𝑗 ∈ S𝛾 (repre-
sented by a tuple (ctID,𝛾,bs𝑗

, 𝑔𝑟𝛾,𝑗,ℓ) ∈ ctID,𝛾,S) is in the intersection of all sets,
check for each 1 ≤ ℓ ≤ 𝑚, if

(ctID,𝛾,bs𝑗[ℓ])
Δ{1,…,𝑛,𝑛+𝛾},𝑛+𝛾 ⋅ 𝑎ℓ

?= (𝑔𝑟𝛾,𝑗,ℓ)𝑡𝑗,ℓ⋅Δ{1,…,𝑛,𝑛+𝛾},𝑛+𝛾

for values 1 ≤ 𝑡𝑗,ℓ ≤ 𝑘. If the value 𝑡𝑗,ℓ occurs 𝑡𝑗,ℓ times for the values 1 ≤
ℓ ≤ 𝑚, increase the value 𝑑 by one.

After all encrypted set element 𝑥𝑗 ∈ S𝛾 have been checked, output the
cardinality of the set intersection 𝑑.

31

Chapter 3. Set Intersections: Two-Client and Multi-client Constructions

Correctness To see that the above defined scheme is correct, observe that
if a set element𝑥𝑗 ∈ S𝑖 is in the intersection of all clients’ sets, the values 𝑟𝑖,𝑗,ℓ
equal 0 for the same values of ℓ in the encrypted Bloomfilters ctID,𝑖,bsS . Hence,
by using the Lagrange interpolation on these elements (corresponding to 𝑎ℓ)
together with an encrypted Bloom filter for a single set element 𝑥𝑗 ∈ S𝛾
(corresponding to ctID,𝛾,bs𝑗

), we obtain

𝐻(ID, ℓ)𝑓(0) ⋅ 𝑔𝑟𝑖,𝑗,ℓ⋅Δ{1,…,𝑛,𝑛+𝛾},𝑛+𝛾 = 𝑔𝑟𝑖,𝑗,ℓ⋅Δ{1,…,𝑛,𝑛+𝛾},𝑛+𝛾.

Now, note that we set 𝜌𝑖,𝑗,ℓ = 𝑡𝑗 ⋅ 𝑟𝑖,𝑗,ℓ if the bit string value bs𝑗[ℓ] = 1. So,
if exactly 𝑡𝑗 bit string values in the set intersection are set to 1, we know that
the element is a member of the set intersection.

Theorem 5. The improved multi-client set intersection cardinality scheme defined
above is secure without corruptions under the ddh assumption in the rom.

Proof. We construct an algorithm that is able to break the ddh problem if a
p.p.t. adversary 𝒜 has a non-negligible advantage in winning the game.

Random Oracle On input of a tuple (ID, ℓ) the oracle checks if it has
answered the query before. If not, it picks a value 𝛽ID,ℓ

𝑅← ℤ𝑝. Next, the
challenger ℬ guesses whether the query is for the challenge ID. If so, the
oracle outputs (𝑔𝑏)𝛽ID,ℓ, otherwise, it outputs 𝑔𝛽ID,ℓ. If the guess turns out to
be wrong later, ℬ can simply abort the game.

Setup The challenger ℬ receives the ddh tuple (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑇) from the
group 𝔾 of prime order 𝑝. It defines a prf ensemble Φ = {𝜙𝜅} and the
Bloom filter BF according to the scheme. Pick for 1 ≤ 𝑖 ≤ 𝑛, values 𝑐𝑖

𝑅← ℤ𝑝
and define the𝑛-degree polynomial 𝑓 ′(𝑥) = 𝑐𝑛𝑥𝑛+⋯+𝑐1𝑥 over the field𝔽𝑝.
The challenger uses 𝑓(𝑥) = 𝑎 ⋅ 𝑓 ′(𝑥) to indirectly define the secret shares.
Note that this still allows ℬ to compute 𝑔𝑓(𝑥) = (𝑔𝑎)𝑓′(𝑥) for all values of 𝑥.
Query To answer an encryption query S𝑖 for a client 𝑖, the challenger uses
the oracle to obtain { 𝛽ID,ℓ ∣ 𝑥𝑗 ∈ S𝑖 } and construct the ciphertext as in the
scheme, but using 𝐻(ID, ℓ)𝑓(𝑥) = (𝑔𝑎)𝛽ID,ℓ𝑓′(𝑥).

Challenge Upon receiving the challenge sets (S∗
𝑖,0,S∗

𝑖,1) for 1 ≤ 𝑖 ≤ 𝑛
and an ID∗ from the adversary, the challenger picks 𝑏 𝑅← {0, 1}. The chal-
lenger returns the encryptions of the sets S∗

𝑖,𝑏 using the scheme’s encrypt

algorithm, but replacing 𝐻(ID∗, ℓ)𝑓(𝑥) by 𝑇 𝛽ID∗,ℓ𝑓′(𝑥). Note that if 𝑇 = 𝑔𝑎𝑏,
the ciphertext is distributed properly according the scheme. If 𝑇 ∈𝑅 𝔾, the
challenger returns a ciphertext of a randomly distributed set element. So,
the challenger ℬ guesses that 𝑇 = 𝑔𝑎𝑏 if 𝒜 correctly guessed 𝑏′ = 𝑏 and
otherwise, ℬ guesses that 𝑇 ∈𝑅 𝔾.

32

3.7. Multi-client Constructions for Set Intersections

To construct efficient mc-fe schemes for set operations that resist cor-
ruptions, we need to be able to check the membership of an encrypted set
element against the encrypted intersection of the clients’ sets. The above
construction fails to be secure against corruptions as it (partially) reveals
the individual bits in the bit string of a Bloom filter for a set element, i.e., the
adversary learns (part of) the bit string representation of the set element. In
Chapter 6, we present an idea for getting both an efficient mc-fe scheme and
have it secure against corruptions.

3.7.3 Multi-client Set Intersection

Set intersections can be computed using a notion similar to non-interactive
distributed encryption (de) schemes [gh11; lhk14]. A de scheme is charac-
terized by two distinctive features. Firstly, we have that multiple clients can
encrypt a plaintext under their own secret key. Secondly, if enough clients
have encrypted the same plaintext, anyone can recover this plaintext from
the clients’ ciphertexts.

We construct an mc-fe scheme for set intersection from a de scheme.

Setup(1𝜆, 𝑛) → (pp,usk1, … ,usk𝑛). Run ��.Gen(1𝜆, 𝑛, 𝑛) to generate an 𝑛-
out-of-𝑛 de scheme defined by pp and obtain the encryption keys (usk1, … ,
usk𝑛).
Encrypt(usk𝑖, ID,S𝑖) → ctID,𝑖. To encrypt the set S𝑖, encrypt the identifier ID
together with each set element 𝑥𝑗 ∈ S𝑖 individually,

ctID,𝑖 = {��.Enc(usk𝑖, ID ‖ 𝑥𝑗) ∣ 𝑥𝑗 ∈ S𝑖 } ,

where ID has a fixed length (e.g., by applying padding). The algorithm’s output
is a random ordering of the set ctID,𝑖.

Eval(ctID,1, … , ctID,𝑛) → ⋂𝑛
𝑖=1 S𝑖. For each 𝑛-tuple

(𝑐ID,1, … , 𝑐ID,𝑛) ∈ ctID,1 × ⋯ × ctID,𝑛,

the evaluator uses ��.Comb(𝑐ID,1, … , 𝑐ID,𝑛) to obtain either themessage ID‖𝑥𝑗
or ⊥. If the message starts with the expected ID, it adds 𝑥𝑗 to the initially
empty setR.

After evaluating all tuples, the evaluator outputs the setR.

Theorem 6. The multi-client set intersection scheme defined above is secure under
the security of the de scheme.

Proof. For 𝑏 ∈ {0, 1}, we consider for every set element 𝑥𝑗,𝑏 ∈ ⋃𝑖∈𝐼 S
∗
𝑖,𝑏 two

cases:

33

Chapter 3. Set Intersections: Two-Client and Multi-client Constructions

• if 𝑥𝑗,𝑏 ∈ ⋂𝑖∈𝐼 S
∗
𝑖,𝑏, 𝑥𝑗,𝑏 is also contained in every client 𝑖’s set S∗

𝑖,1−𝑏;

• if 𝑥𝑗,𝑏 ∉ ⋂𝑖∈𝐼 S
∗
𝑖,𝑏, there is at least one set S∗

𝑘,1−𝑏 which does not
contain 𝑥𝑗,𝑏, but an element 𝑥𝑗,1−𝑏 ∉ ⋂𝑖∈𝐼 S

∗
𝑖,1−𝑏 (and hence 𝑥𝑗,1−𝑏 ∉

⋂𝑖∈𝐼 S
∗
𝑖,𝑏) instead.

For the elements 𝑥𝑗 satisfying the first case, the adversary does not learn
anything about 𝑏 since for every client 𝑖 we have that 𝑥𝑗 ∈ S∗

𝑖,𝑏 and 𝑥𝑗 ∈
S∗

𝑖,1−𝑏, while |S∗
𝑖,𝑏| = |S∗

𝑖,1−𝑏| (remember that the set elements are randomly
ordered).

For the elements 𝑥𝑗,𝑏 satisfying the second case, we claim that the adver-
sary does not learn anything about 𝑏 by the security of the de scheme. To see
this, note that there exist at least two uncorrupted clients, with at least one
client which did not encrypt the plaintext ID∗ ‖𝑥𝑗,𝑏. Observe that the security
of the de scheme gives us that one cannot distinguish an encryption of a
plaintext 𝑚0 from an encryption of a plaintext 𝑚1 as long as at most 𝑡 − 1
uncorrupted clients have encrypted the same plaintext. Combined with the
fact that in our scheme we have set 𝑡 = 𝑛 and the fact that we know that at
least one uncorrupted client did not encrypt the message ID∗ ‖ 𝑥𝑗,𝑏 and also
that at least one uncorrupted client did not encrypt the message ID∗ ‖ 𝑥𝑗,1−𝑏,
we know that the encryption of the message ID∗ ‖ 𝑥𝑗,𝑏 is indistinguishable
from the encryption of the message ID∗ ‖ 𝑥𝑗,1−𝑏.

To improve efficiency, we can combine the above multi-client set inter-
section scheme with the efficient multi-client set intersection cardinality
scheme. The construction for determining the cardinality can be used first
to identify which ciphertext elements correspond to set elements that are in
the set intersection. Next, we only have to use the evaluation algorithm of
the multi-client set intersection scheme on these elements from which we
know that they belong to the set intersection.

3.8 Evaluation

We have created proof-of-concept implementations¹ of the proposed 2c-fe
schemes and the two mc-fe schemes for determining the cardinality of the
intersection. The implementations are done in Python using the Charm
library [agm⁺13] at a 128 bit security level. The evaluations are done on a
commodity laptop (i5-4210U@1.7GHz, 8GB RAM) using only a single core.
In Figure 3.2 we show the time it took to run Eval on encrypted sets of varying
. .

¹Available at https://github.com/CRIPTIM/nipsi.

34

https://github.com/CRIPTIM/nipsi

3.9. Conclusion

sizes. Each client encrypted a set of the same size and had 10% of their set in
common with the other clients.

We see that the 2c-fe constructions can be evaluated in under a second,
even for sets of 100 thousand elements in size. A lower bound of the timings
is given by the 2c-fe cardinality scheme, CA, since it uses the same built-in
Python algorithm that is used on plaintext data. The mc-fe constructions are
polynomial in the set sizes. We evaluated the Bloom filter (BF) construction
with a worst-case false positive rate of 0.001.² While it scales linear for fixed
Bloom filter sizes, we also have to linearly increase the length of the bit
strings in the set size. This results in a quadratic overall efficiency of the Eval
algorithm.

3.9 Conclusion

We initiated the study of non-interactive two-client functional encryption
(2c-fe) and multi-client functional encryption (mc-fe) schemes for set inter-
section. We show that very efficient 2c-fe schemes can be constructed for
set intersection and related set operations. Additionally, the problem of con-
structing non-interactive set intersection schemes for three or more clients
is addressed by our mc-fe schemes from a theoretical perspective. Finally,
we show the practicability of the proposed schemes using proof-of-concept
implementations.

. .
²An upper bound for the false positive rate of a Bloom filter resulting from the set inter-

section is the false positive rate of a Bloom filter with the same number of elements inserted
minus the expected set intersection size. For our worst-case evaluations, we set the expected
set intersection size to zero.

35

Chapter 3. Set Intersections: Two-Client and Multi-client Constructions

Figure 3.2. Evaluations
for determining the
cardinality (CA); car-
dinality using Bloom
filters (CA-BF); set inter-
section (SI); and cardi-
nality (Th-CA) and set
intersection (Th-SI) in
the threshold scheme.

101 102 103 104 105
10−6

10−5

10−4

10−3

10−2

10−1

100

Size of each client’s set

M
ea
n
ev
al
ua
tio

n
tim

e
(s
ec
on

ds
)

CA
SI
Th-CA
Th-SI

(a) Timings for 2�-�� schemes. In evaluating the threshold scheme, we set the
threshold required to recover the set intersection to 𝑡 = 5.

50 100 150 200 250
0

100

200

300

400

500

Size of each client’s set

M
ea
n
ev
al
ua
tio

n
tim

e
(s
ec
on

ds
)

CA 𝑛 = 3
CA-BF 𝑛 = 3
CA 𝑛 = 5
CA-BF 𝑛 = 5

(b) Timings for ��-�� schemes with a varying number of clients 𝑛. The timings
are interpolated on the domain [0, 250].

36

.

4 Equality Tests
Vector Equality With Optional Wildcards

. .

In the chapter above, we explore multi-client functional encryp-
tion for set operations. In this chapter, we consider another func-
tionality to answer Research Question 1. This new functionality is
for a class of predicates, known as conjunctive equality tests. To
achieve this, we propose the first multi-client predicate-only en-
cryption scheme capable of efficiently testing the equality of two
encrypted vectors. Our construction can be used for the privacy-
preserving monitoring of relations among multiple clients. Since
both the clients’ data and the predicates are encrypted, our sys-
tem is suitable for situations in which this information is consid-
eredsensitive. Weproveour constructionplaintext andpredicate
private in the generic bilinear group model using random ora-
cles, and secure under chosen-plaintext attackswith unbounded
corruptionsunder theexternal decisionalDiffie–Hellmanassump-
tion. Additionally, considering Research Question 2, we provide
a proof-of-concept implementation that is capable of evaluating
one thousand predicates defined over the inputs of ten clients in
less than a minute on commodity hardware.

This chapter is based on the work “Multi-client Predicate-Only
Encryption for Conjunctive Equality Tests” [���+17], presented
at ����.

4.1 Introduction

Predicate encryption (pe) [ksw08] is a special type of encryption that sup-
ports the evaluation of functions on encrypted data. On a conceptual level,
in predicate encryption a ciphertext of a message 𝑚 is associated with a de-
scriptive value 𝑥 and a decryption key sk𝑓 with a predicate 𝑓. The decryption
of a ciphertext using a key sk𝑓 only succeeds if the predicate 𝑓(𝑥) evaluates
to true. Special-purpose variants of this notion include identity-based en-
cryption (ibe) [bf01], attribute-based encryption (abe) [sw05], and hidden

37

Chapter 4. Equality Tests: Vector Equality With Optional Wildcards

vector encryption (hve) [bw07]. Another variant of pe is predicate-only en-
cryption [ksw08; ssw09]. In predicate-only encryption, ciphertexts do not
contain a message 𝑚, but merely consist of an encryption of the descriptive
value 𝑥. In this case, the decryption algorithm returns the outcome of the
predicate 𝑓 evaluated on the predicate subject 𝑥, that is, 𝑓(𝑥).

The concept of pe can be generalized to functional encryption (fe) [bsw11;
ONe10], in which the decryption of a ciphertext using a key sk𝑓 for a (not
necessarily predicate) function 𝑓 does not return the original plaintext 𝑚,
but the value 𝑓(𝑚) instead. More recently, Goldwasser et al. [ggg⁺14] for-
mally defined multi-client functional encryption (mc-fe). mc-fe is a type
of secret key encryption in which 𝑛 distinct clients can individually encrypt
a message 𝑚𝑖 using their secret encryption key sk𝑖. Using a decryption key
for an 𝑛-ary function 𝑓, the decryption algorithm takes as input the 𝑛 cipher-
texts of the clients and returns 𝑓(𝑚1, … , 𝑚𝑛). Although fe for generalized
functionalities [ggh⁺13a; ggg⁺14] is an active field of research and of great
theoretical interest, fe constructions for a restricted family of functions
(such as predicates) are often far more efficient than fe schemes for arbi-
trary polynomially sized circuits. For example, most works in the area of
mc-fe for generalized functionalities rely on inefficient primitives such as
indistinguishability obfuscation (𝑖𝒪) or multilinear maps.

In this work, we propose the first multi-client predicate-only encryption
scheme. Our construction can evaluate an 𝑛-ary predicate 𝑓 on the descrip-
tive values 𝑥𝑖 coming from 𝑛 distinct clients. The type of predicates that
we can evaluate using our construction is restricted to conjunctive equality
tests. To put it simply, our multi-client predicate-only encryption (mc-poe)
scheme is capable of testing the equality of two encrypted vectors. One of
these vectors is determined by the decryption key, while the other vector is
composed of ciphertexts from several distinct clients. We also provide an
extension to our construction in which the decryption keys may contain wild-
card components. A wildcard component in the decryption key indicates that
it does not matter what the client corresponding to that vector component
encrypts: any value matches the wildcard. An attentive reader familiar with
the concept of hve [bw07] will recognize the functional similarity between
the two concepts. However, a crucial difference in our construction is that
the ciphertext vector is composed of the ciphertexts from multiple clients,
instead of being generated by a single party. A further comparison of related
work is discussed in Section 4.1.2.

Our multi-client predicate-only encryption construction uses pairing-
based cryptography and satisfies two distinct security notions. The first
notion covers both the attribute-hiding [ksw08] (also referred to as plaintext-

38

4.1. Introduction

privacy [ssw09]) and predicate-privacy [ssw09] properties of predicate en-
cryption. Informally, these properties guarantee that an adversary can neither
learn the value 𝑥 of a ciphertext, nor learn the predicate from a given decryp-
tion key. Since we construct a multi-client scheme, we choose to adapt the
established mc-fe security requirement [ggg⁺14] for our full security notion
of multi-client predicate-only encryption. This full security notion protects
against an attacker that has oracle access to both the key generation algo-
rithm and the encryption algorithm. In the associated security game, the
adversary is additionally allowed to statically corrupt clients. We prove our
construction secure in the generic bilinear groupmodel using randomoracles.
We also propose the (intuitively weaker) chosen-plaintext security notion, in
which an attacker has only oracle access to the encryption algorithm, but can
instead corrupt an unbounded number of clients. We prove our construction
secure under this second notion in the standard model using the external
decisional Diffie–Hellman assumption.

Our construction is designed to be simple and fast. We have implemented
and analyzed our construction to evaluatewhether it is efficient enough to run
in practice. In our proof-of-concept implementation, clients can encrypt their
values in about 2.6ms, while decryption keys, depending on the number of
vector components, can be created in less than a second. The Eval algorithm,
used to evaluate the predicate on the multiple inputs, scales linearly in the
number of inputs and requires only 0.10 seconds for the comparison of
vectors of length 20.

4.1.1 Motivating Use Cases

Privacy-preserving monitoring over encrypted data is one of the main appli-
cations for multi-client predicate-only encryption. For example, consider the
monitoring of a system comprised of various independent subsystems. We
want to raise an alarmwhen a dangerous combination of events at the various
subsystems occurs. By centrally collecting status messages of the individual
systems, we can check for such situations. Such a central collection of status
messages additionally avoids the need for costly interactions between the
various systems. However, if these status messages are considered sensi-
tive, the monitoring cannot be done on the cleartext messages. Multi-client
predicate-only encryption overcomes this problem by allowing a monitor
to evaluate an 𝑛-ary predicate over multiple ciphertexts and raise an alarm
when the predicate returns true.

A careful reader might realize that encryption of the status messages is
not a sufficient requirement. If the monitor can check arbitrary predicates,

39

Chapter 4. Equality Tests: Vector Equality With Optional Wildcards

it can as well recover the individual plaintext status messages¹, making its
encryption useless. Therefore, we have to require that another party issues
the decryption keys to the monitor. Since we can consider the monitor to be
a third party, it is unlikely that it is allowed to learn the predicates, making
a strong case for the requirement of both plaintext privacy and predicate
privacy.

The functionality of our construction is developed with the applications
in the critical infrastructure (ci) domain inmind. The benefits of information
sharing are widely acknowledged [pcc97], but stakeholders are still very
reluctant in sharing their information with other parties [ms02; ds09; ssf16].
We give two concrete use cases.

• Detection of coordinated attacks. While a single failure of a system in a
ci may occur occasionally, a sudden failure of multiple systems from
distinct ci operators, could be an indication of a large scale cyberattack.
By centrally monitoring the “failure”/“running” status messages of
the ci operators, a warning can be given to the national computer
emergency response team whenever a combination of systems fails,
allowing further investigation of the failures. Additionally, instead of
sharing just binary messages to indicate whether a system has failed, it
is also helpful to share and monitor cyberalert levels. These cyberalert
levels from different clients are used to get an improved situational
overview [lk15b].

• Monitoring of dependencies among ci operators. There exist many depen-
dencies among various cis [lnk⁺09], making it possible for disruptions
to easily propagate from one infrastructure to another [clo⁺06]. By
timely reporting status messages on supply, a central authority can
determine whether supply will meet demand and otherwise instruct
parties to prepare their backup resources. Similarly, the sharing of
compliance status (e.g., whether they can be met or not) can be used
to take the right security measures at another party [lk15b].

4.1.2 Related Work

Amulti-input functional encryption (mi-fe) [ggg⁺14] scheme is an fe scheme
that supports the computation of functions over multiple encrypted in-
puts. Examples of special-purpose mi-fe include property-preserving en-
cryption [pr12], such as for ordering [blr⁺15; clw⁺16] or equality [yth⁺10],
. .

¹For example, the monitor could create a decryption key for a predicate evaluation of a
single message, e.g., 𝑓(𝑥1, … , 𝑥𝑛) = true if and only if 𝑥1 = 0.

40

4.1. Introduction

and multi-input inner product encryption (mi-ipe) [agr⁺17]. The mi-ipe
scheme by Abdalla et al. [agr⁺17] is capable of computing the inner product
of two vectors, i.e., the decryption algorithm returns a scalar. This should
not be confused with an inner-product predicate encryption scheme where
predicates (with a true/false result) can be evaluated by an inner product.
A private-key, multi-client fe (mc-fe) scheme [gkl⁺13; ggg⁺14] is a variant
of mi-fe. There are two key differences between the two notions. Firstly,
mc-fe requires that the ciphertexts for the function inputs are generated by
individual distinct parties, while in mi-fe it is allowed to have only a single
encryptor for all the inputs. Secondly, in mc-fe the ciphertexts are asso-
ciated with a time-step [ggg⁺14] or identifier. Such an identifier is used to
prevent mix-and-match attacks: decryption only works when all ciphertexts
are associated with the same identifier.

Although not recognized as such, several special-purpose mc-fe schemes
have already been proposed in literature. Shi et al. [scr⁺11] propose a con-
struction for the privacy-preserving aggregation of time-series data. Their
construction allows a central party to compute and learn the sum over en-
crypted numbers, without learning the individual numbers themselves. De-
centralized multi-authority attribute-based encryption (ma-abe) [lw11] can
also be considered a form of mc-fe. In ma-abe, several decryption keys, is-
sued by different authorities and associated with an identifier, need to be
combined to decrypt a single ciphertext. The similarity becomes apparent
once we swap the roles of the ciphertext and decryption keys.

Wildcards have been used in pe before by Abdalla et al. [acd⁺06] in ibe
and by Boneh and Waters [bw07] in hve. These works differ from our work
in several aspects. Most importantly, our construction is a multi-client vari-
ant instead of single-client. If we would apply a single-client construction
in a multi-client setting, we would leak the individual predicate results for
each party. Secondly, we achieve both plaintext privacy and predicate pri-
vacy, which is known to be impossible to accomplish in the public-key set-
ting [ssw09] ([acd⁺06; bw07] are in the public-key setting). Finally, we look
at predicate-only encryption, not at regular pe in which the ciphertexts may
also contain an encrypted payload message.

Numerous pe schemes are used for searchable encryption (se) [bhj⁺14].
However, we see no great benefit in applying mc-poe as an se scheme. An
mc-poe scheme enables us to compute a predicate over multiple inputs from
several explicitly chosen clients. In se, this would correspond to a search
over documents where the query specifies which keywords have to be set
by which parties. This is also the reason why existing multi-writer [bhj⁺14]
schemes, do not consider searching over documents using queries which, for

41

Chapter 4. Equality Tests: Vector Equality With Optional Wildcards

example, specify that party 𝑝1 should have added keyword 𝑤1, while party 𝑝2
should have added keyword 𝑤2.

4.2 Multi-client Predicate-Only Encryption

A multi-client predicate-only encryption (mc-poe) scheme is a collection of
the following four polynomial-time algorithms.

Setup(1𝜆, 𝑛). This algorithm defines the public parameters pp, a master
secret key msk, and the encryption keys usk𝑖 for every client 1 ≤ 𝑖 ≤ 𝑛.
The algorithm also defines the finite message space ℳ𝑛 and the predicate
family ℱ, which predicates are efficiently computable on ℳ𝑛.

Encrypt(usk𝑖, ID, 𝑥𝑖). A client 𝑖 can encrypt a value 𝑥𝑖 ∈ ℳ using its en-
cryption key usk𝑖 and an identifier ID. Different clients can use the same
identifier. However, each client can only use an identifier at most once. The
algorithm returns a ciphertext ctID,𝑖. We usually omit the index ID when
there is no ambiguity. Furthermore, we introduce the following simplifi-
cation of notation for a set of ciphertexts associated with the same ID: For
an ordered set S ⊆ {1, … , 𝑛} of indices, we write the set of ciphertexts
{ Encrypt(usk𝑗, ID, 𝑥𝑗) ∣ 𝑗 ∈ S } as Encrypt(uskS , ID, 𝐱S). If S = {1, … , 𝑛},
we simply write Encrypt(usk, ID, 𝐱) or ct𝐱.

KeyGen(msk, 𝑓). The key generator can create an evaluation key, also termed
token, for predicate 𝑓 ∈ ℱ using msk. The algorithm returns the token esk𝑓.

Eval(esk𝑓, ct𝐱). The Eval algorithm requires a vector of ciphertexts ct𝐱 and a
token esk𝑓 as input. The algorithm outputs a Boolean value.

Correctness A multi-client predicate-only encryption scheme is correct
if Eval(esk𝑓, ct𝐱) = 𝑓(𝐱). Formally, we require for all 𝑛 ∈ ℕ, 𝐱 ∈ ℳ𝑛, and
𝑓 ∈ ℱ,

Pr
⎡
⎢
⎣

Eval(ct𝐱, esk𝑓) ≠ 𝑓(𝐱):
(pp,msk, {usk𝑖}) ← Setup(1𝜆, 𝑛)

ct𝐱 ← Encrypt(usk, ID, 𝐱)

esk𝑓 ← KeyGen(msk, 𝑓)

⎤
⎥
⎦

is negligible in the security parameter 𝜆, where the probability is taken over
the coins of Setup, Encrypt, and KeyGen.

Note that we do not impose any restriction on the output of Eval if it
operates on messages encrypted under different identifiers.

42

4.2. Multi-client Predicate-Only Encryption

4.2.1 Multi-client Predicate-Only Encryption Security

A commonly considered security game for private-key functional encryption
is an indistinguishability-based notion under which the adversary may query
both the Encrypt and the KeyGen oracles [ksw08; ssw09; ggg⁺14] (cf. Defini-
tion 6). Since our mc-poe is a special case of mc-fe, we start from the security
notion from Goldwasser et al. [ggg⁺14]. However, they only consider the
indistinguishability of plaintexts (plaintext privacy [ksw08; ssw09]) and not
of functions (function or predicate privacy [ssw09; bs15]) in their security defi-
nition. In the following full security notion, we combine the plaintext-privacy
and predicate-privacy notions, similarly to Shen, Shi, and Waters [ssw09].

Because an evaluation of a predicate on a set of messages reveals some
information about the messages in relation to the predicate (and vice versa),
we cannot allow the adversary to query for all combinations of messages and
predicates. For example, an adversary can distinguish an encryption of mes-
sage 𝐱0 from an encryption of 𝐱1 if it has a token for a predicate 𝑓 such that
𝑓(𝐱0) ≠ 𝑓(𝐱1). Even if we require 𝑓(𝐱0) = 𝑓(𝐱1) for all predicates 𝑓 that the
adversary queried, a similar situation can still appear. To see this, consider
an adversary corrupting client 𝑖 so that it can encrypt any message 𝑚𝑖 as 𝑖th
input. This means that the adversary can also trivially distinguish the two
messages if there exists a value 𝑚𝑖, such that if it replaces the 𝑖th input of
𝐱0 and 𝐱1 by 𝑚𝑖 (resulting in inputs 𝐱′

0 and 𝐱′
1 respectively), the predicate

has different outputs, i.e., 𝑓(𝐱′
0) ≠ 𝑓(𝐱′

1). Likewise, we also have to require
that the predicates 𝑓0 and 𝑓1 yield the same result on a queried input 𝐱, even
if the adversary replaces some of the corrupted clients’ inputs by another
value.

In our security definition, we use the term static corruptions to indicate
that the adversary announces the corrupted clients at the beginning of the
game and cannot corrupt additional clients during the rest of the game. We
let 𝐼 be the set of indices of the uncorrupted clients, and similarly, indicate the
indices of the corrupted clients by the set ̄𝐼. Recall that we use the notation𝐱𝐼
to denote the subvector of 𝐱 containing only the components from the set 𝐼.
We denote with 𝑓(𝐱𝐼, ⋅) a predicate 𝑓 with the pre-filled inputs 𝐱𝐼.

Definition 8 (Adaptive Full Security). A multi-client predicate-only encryp-
tion scheme is adaptive full secure under static corruptions if every probabilistic
polynomial time adversary 𝒜 has at most a negligible advantage in winning
the following game.

Initialization The adversary 𝒜 submits a set of indices ̄𝐼 to the challenger.
We define the complement set 𝐼 = {1, … , 𝑛} ∖ ̄𝐼.
Setup The challenger runs Setup(1𝜆, 𝑛) to get the pp,msk, and {usk𝑖}1≤𝑖≤𝑛.

43

Chapter 4. Equality Tests: Vector Equality With Optional Wildcards

It gives the public parameters pp and corrupted clients’ keys {usk𝑖 ∣ 𝑖 ∈ ̄𝐼 }
to the adversary.

Query 1 The adversary 𝒜 may query the challenger for ciphertexts or tokens.

• Ciphertext In case of a ciphertext query for (𝑖, ID, 𝑥𝑖), the challenger
returns ctID,𝑖 ← Encrypt(usk𝑖, ID, 𝑥𝑖).

• Token For a token query for 𝑓, the challenger returns the evaluation
key esk𝑓 ← KeyGen(msk, 𝑓).

Challenge The challenger picks a random bit 𝑏. The adversary can either
request a ciphertext challenge or a token challenge.

• Ciphertext In case of a ciphertext challenge, the adversary sends
(ID∗, 𝐱∗

0,𝐼, 𝐱∗
1,𝐼) to the challenger. The challenger answer the query

with the challenge ciphertext Ch𝐼 ← Encrypt(usk𝐼, ID∗, 𝐱∗
𝑏,𝐼).

• Token In case of a token challenge, the adversary sends (𝑓∗
0, 𝑓∗

1) to
the challenger. The challenger returns the challenge token Ch ←
KeyGen(msk, 𝑓∗

𝑏).

Query 2 The adversary may query the challenger again, similar to Query 1.

Guess The adversary outputs its guess 𝑏′ ∈ {0, 1} for the bit 𝑏.

We say that adversary 𝒜 wins the game, if 𝑏′ = 𝑏 and

• in case of a ciphertext challenge, 𝒜 did not query for a ciphertext using
identifier ID∗ in any of the two query phases, nor query for a predicate 𝑓,
such that 𝑓(𝐱∗

0,𝐼, ⋅) ≠ 𝑓(𝐱∗
1,𝐼, ⋅);

• in case of a token challenge, 𝒜 did not query for (𝑖, ID, 𝑥𝑖), for uncor-
rupted clients 𝑖 ∈ 𝐼, such that it can combine these inputs 𝑥𝑖 for the
same ID, into a vector 𝐱𝐼, where 𝑓∗

0(𝐱𝐼, ⋅) ≠ 𝑓∗
1(𝐱𝐼, ⋅).

Note that in the above defined game, in case of a ciphertext challenge, the
challenger only returns challenge ciphertexts for the uncorrupted clients. The
adversary can still evaluate predicates on the received challenge by generating
the ciphertext values for the corrupted clients using their encryption keys.

It is important to realize that the challenger can decide whether the
adversary wins the game or not in polynomial time. This is possible because
the adversary 𝒜 can only query for a polynomial number of ciphertexts and
tokens. Moreover, the challenger is able to efficiently check if 𝑓(𝐱𝐼, ⋅) =
𝑓 ′(𝐱′

𝐼, ⋅) as both 𝑛 and ℳ𝑛 are finite and fixed by Setup(1𝜆, 𝑛).

44

4.2. Multi-client Predicate-Only Encryption

Definition 9 (Selective Full Security). The definition of a selective full secure
under static corruptions multi-client predicate-only encryption scheme is
similar to the adaptive full security notion of Definition 8. The difference
between the two, is that in selective security game, the challenge request (i.e.,
either (ID∗, 𝐱∗

0,𝐼, 𝐱∗
1,𝐼) or (𝑓∗

0, 𝑓∗
1)) is announced during Initialization.

As explained before, the full security definition actually defines two se-
curity notions. We say that an mc-poe scheme is adaptive (selective) plaintext
private if no adversary can win the adaptive (selective, respectively) full secu-
rity game with a ciphertext challenge. Similarly, an mc-poe scheme is adaptive
(selective) predicate private if no adversary can win the adaptive (selective,
respectively) full security game with a token challenge.

Chosen-Plaintext Security The definition of full security is very strong
as it allows an adversary to query for both ciphertexts and tokens. This is
similar to the chosen-ciphertext attack (cca) security notion used in public-
key cryptography, where the adversary can query both the encryption and
decryption² oracle. To accommodate for a different attackermodel, we define
a chosen-plaintext security notion, where the adversary only has access to the
encryption oracle and is asked to distinguish between two ciphertexts. Such
a notion is similar to chosen-plaintext attack (cpa) security as defined in
public-key cryptography and is also related to the offline security notion of
Lewi and Wu [lw16], in which an attacker has only access to ciphertexts and
not to decryption keys. To make our notion stronger, we give the adversary
access to all clients’ encryption keys (but not to the internal randomness of
the clients).

Definition 10 (Chosen-Plaintext Security). A multi-client predicate-only
encryption scheme is chosen-plaintext secure under unbounded corruptions if any
probabilistic polynomial time algorithm 𝒜 has at most a negligible advantage
in winning the following game.

Setup The challenger runs Setup(1𝜆, 𝑛) to get the pp,msk, and {usk𝑖}1≤𝑖≤𝑛.
It gives the public parameters pp and all clients’ keys {usk𝑖}1≤𝑖≤𝑛 to the ad-
versary. Note that the adversary𝒜 can encrypt anymessage𝑥𝑖 for identifier ID
using the key usk𝑖 by computing Encrypt(usk𝑖, ID, 𝑥𝑖).

Challenge The adversary sends the challenge request (ID∗, 𝐱∗
0, 𝐱∗

1) to the
challenger. The challenger picks a random bit 𝑏 and returns the challenge
ciphertext Encrypt(usk, ID∗, 𝐱∗

𝑏) to the adversary.
. .

²In mc-poe, an adversary can use a token and the public Eval algorithm to learn more
about the encrypted plaintext.

45

Chapter 4. Equality Tests: Vector Equality With Optional Wildcards

Guess The adversary outputs its guess 𝑏′ ∈ {0, 1} for the bit 𝑏.

We say that adversary 𝒜 wins the game if 𝑏′ = 𝑏.

Observe that in this game the adversary is given every client’s private
key. This security requirement is quite strong and corresponds to a following
situation: Even if an attacker compromises a client and steals its encryption
keys, it remains hard for the attacker to determine the plaintexts of the
ciphertexts created before and after the compromise.

4.3 Our Construction

We construct a multi-client predicate-only encryption scheme for the func-
tionality of a conjunctive equality test. To evaluate if 𝑛 messages 𝑥1, … , 𝑥𝑛,
encrypted by distinct clients, equal the values 𝑦1, … , 𝑦𝑛, we evaluate the
predicate

Match(𝐱, 𝐲) = {
true if ⋀𝑛

𝑖=1(𝑥𝑖 = 𝑦𝑖),
false otherwise.

As discussed in Section 4.1.1, this functionality turns out to be surprisingly
useful in the domain of critical infrastructure protection. In this setting, a
monitor combines the ciphertexts associated with the same identifier and
evaluates all its tokens (corresponding to various predicates) on the cipher-
text vector to see if there is a match. If a match is found, the monitor may
raise an alarm or take other appropriate actions. A schematic overview of
relations among all parties of such a multi-client monitoring system is shown
in Figure 4.1.

We now describe ourmulti-client predicate-only encryption construction
for conjunctive equality tests over multiple clients.

Setup(1𝜆, 𝑛). Let (𝑝, 𝔾1, 𝔾2, 𝔾𝑇, 𝑒, 𝑔1, 𝑔2) ← 𝒢3(1𝜆) be the parameters for
a Type 3 asymmetric bilinear group. Choose a pseudorandom permutation
(prp) 𝜋: 𝒦 × ℳ → ℳ for message space ℳ ⊆ ℤ𝑝 and a cryptographic
hash function 𝐻: {0, 1}∗ → 𝔾1. The bilinear group parameters together
with both functions form the public parameters. To generate the keys, select
𝛼𝑖, 𝛾𝑖

𝑅← ℤ∗
𝑝 and 𝛽𝑖

𝑅← 𝒦 for 1 ≤ 𝑖 ≤ 𝑛. The master secret key is

msk = {(𝑔 𝛼𝑖
2 , 𝛽𝑖, 𝑔 𝛾𝑖

2)}𝑛
𝑖=1.

The secret encryption key for client 𝑖 is

usk𝑖 = (𝑔 𝛼𝑖
1 , 𝛽𝑖, 𝛾𝑖).

46

4.3. Our Construction

key generator

msk
𝐲 = (37 23 ⋯ 6)

client 1

usk1
𝑥1 = 37

client 2

usk2
𝑥2 = 8

⋯ client 𝑛

usk𝑛
𝑥𝑛 = 0

monitor
esk𝐲

ct 1

ct
2

ct𝑛

Match(𝐱, 𝐲) ?= true

Figure 4.1. In this example of a multi-client monitoring system, there are 𝑛 distinct
clients (with keys usk1, … ,usk𝑛) that determine the values 𝑥1, … , 𝑥𝑛. The monitor
computes the functionality Match(𝐱, 𝐲) using the encrypted values ct1, … , ct𝑛 and
an evaluation token esk𝐲. The monitor is only able to compute the functionality if all
clients encrypted their value 𝑥𝑖 using the same identifier ID (not shown in the figure).

Encrypt(usk𝑖, ID, 𝑥𝑖). Client 𝑖 can encrypt its message 𝑥𝑖 ∈ ℳ for identi-
fier ID using usk𝑖 and 𝑟𝑖

𝑅← ℤ∗
𝑝,

ct𝑖 = (𝐻(ID), 𝑔 𝑟𝑖
1 , 𝑔 𝛼𝑖𝜋(𝛽𝑖,𝑥𝑖)𝑟𝑖

1 𝐻(ID)𝛾𝑖).

KeyGen(msk, 𝐲). The token generator can encrypt a vector 𝐲 ∈ ℳ𝑛 using
its key msk. Choose 𝑢𝑖

𝑅← ℤ∗
𝑝 for 1 ≤ 𝑖 ≤ 𝑛 and output

esk𝐲 = ({ 𝑔 𝑢𝑖
2 , 𝑔 𝛼𝑖𝜋(𝛽𝑖,𝑦𝑖)𝑢𝑖

2 ∣ 1 ≤ 𝑖 ≤ 𝑛 }, ∏
1≤𝑖≤𝑛

(𝑔 𝛾𝑖
2)𝑢𝑖) .

Eval(esk𝐲, {ct𝑖}1≤𝑖≤𝑛). Output the result of the evaluation test

∏
1≤𝑖≤𝑛

𝑒(𝑔 𝛼𝑖𝜋(𝛽𝑖,𝑥𝑖)𝑟𝑖
1 𝐻(ID)𝛾𝑖, 𝑔 𝑢𝑖

2) ?=

∏
1≤𝑖≤𝑛

𝑒(𝑔 𝑟𝑖
1 , 𝑔 𝛼𝑖𝜋(𝛽𝑖,𝑦𝑖)𝑢𝑖

2) ⋅ 𝑒(𝐻(ID), ∏
1≤𝑖≤𝑛

(𝑔 𝛾𝑖
2)𝑢𝑖).

4.3.1 Correctness

Correctness follows from the definition of Eval. We remark that the output of
Eval is completely determined by ∑1≤𝑖≤𝑛(𝜋(𝛽𝑖, 𝑥𝑖) − 𝜋(𝛽𝑖, 𝑦𝑖)) ?= 0. Since
the function 𝜋 is a prp, the probability of Eval(esk𝐲, ct𝐱) ≠ Match(𝐱, 𝐲) is
negligible.

47

Chapter 4. Equality Tests: Vector Equality With Optional Wildcards

4.3.2 Security

To get an intuition for the security of our construction, observe that the
clients’ messages itself are first encrypted using the prp 𝜋. By using the
output of the prp as an exponent and randomizing it with the value 𝑟, we
create a probabilistic encryption of the message. The prp’s randomized
output also prevents malleability attacks. Similarly, the vector components
of the vector 𝐲 are individually encrypted in a similar way. Because part
of the clients’ keys (i.e., 𝑔 𝛼𝑖

1) and the master secret key (i.e., 𝑔 𝛼𝑖
2) reside in

different groups, it is hard for a client to create a token and hard for the token
generator to create a ciphertext.

The formal security analysis can be found in Section 4.4. We prove our
construction selective plaintext private and adaptive predicate private. Addi-
tionally, we prove the chosen-plaintext security property of the construction.
Plaintext and predicate privacy are proven in the generic group model using
random oracles. This combination of models has been successfully applied
in other works before [Sma01; cmz14]. Chosen-plaintext security can be
proven in the standard model and under the decisional Diffie–Hellman (ddh)
assumption in group 𝔾1. We formulate the following two theorems.

Theorem 7. Let 𝒜 be an arbitrary probabilistic polynomial time adversary having
oracle access to the group operations and the encryption and token generation
algorithms, while it is bounded in receiving at most 𝑞 distinct group elements.
The adversary 𝒜 has at most an advantage of 𝑂(𝑞2 ⁄ 𝑝) in winning either the
selective plaintext-privacy (see Definition 9) or the adaptive predicate-privacy game
(see Definition 8) in the random oracle model.

Theorem 8. The construction presented above is chosen-plaintext secure with an
unbounded number of corruptions (Definition 10) under the ddh assumption in
group 𝔾1.

Both plaintext privacy and predicate privacy are proven secure through a
series of hybrid games. In every game hop, a component of the challenge vec-
tor (either the ciphertext or token challenge vector) is replaced by a random
one. In the final game, once all components are replaced by random elements,
no adversary can gain an advantage since it is impossible to distinguish a
random vector from another random one.

However, in the selective plaintext-privacy game, not every component
of the challenge vector can be replaced by a random component. If a com-
ponent 𝑥∗

𝑏,𝑖 of the challenge vector 𝐱∗
𝑏 is deterministic, i.e., the challenge

inputs were the same for that component, 𝑥∗
0,𝑖 = 𝑥∗

1,𝑖 = 𝑚, the adversary
may query for a token to match this single component for the value 𝑦𝑖 = 𝑚.

48

4.3. Our Construction

Note that if this component is replaced by a random element, Match will,
with overwhelming probability, return false, while it should have returned
true. Hence, the deterministic components of the challenge vector have
to remain untouched in every game hop. This implies that the number of
game hops depends on the challenge inputs, requiring the challenger to know
the challenge inputs a priori. This limitation does not appear for predicate
privacy, making it possible to prove adaptive security instead.

4.3.3 Extension Allowing Wildcards

Although a construction for the described conjunctive equality matching
functionality would suffice, it may be very inefficient when a predicate is
defined over a subset of the clients’ inputs. For example, suppose the token
generator has a predicate for which it actually does not care what client 𝑖
sends. Now, if we have only conjunctive equality matching, we would need to
create a token for every possible message that client 𝑖 can send. Besides that
this will be very inefficient if client 𝑖 could send many different messages, it
would also reveal whenever client 𝑖 has sent the same values multiple times:
Whenever a client sends the same value multiple times, the same token will
match multiple times as well!

We can extend our construction with the ability to test for the equality
of vectors with the additional feature that the predicate vector 𝐲 can now
contain wildcard components. Such a wildcard component matches against
any value of the corresponding ciphertext component. This makes the testing
functionality similar to the one used in hve [bw07], however, our system
combines the ciphertexts frommultiple clients. Formally, the clients encrypt
their messages from the message space ℳ ⊆ ℤ𝑝, where the token generator
uses the space ℳ∗ = ℳ ∪ {⋆}. The multi-client predicate-only encryption
construction now evaluates the function

Match⋆(𝐱, 𝐲) = {
true if ∀𝑖: (𝑥𝑖 = 𝑦𝑖) ∨ (𝑦𝑖 = ⋆),
false otherwise.

To achieve this additional functionality, we have to change the KeyGen
and Eval algorithms, the other algorithms remain unchanged.

KeyGen⋆(msk, 𝐲). The token generator can encrypt a predicate vector 𝐲 ∈
(ℳ∗)𝑛 using the master secret key msk. Let S𝐲 be the set of indices of the
non-wildcard components of the vector 𝐲. Choose 𝑢𝑖

𝑅← ℤ∗
𝑝 for 𝑖 ∈ S𝐲 and

output

esk𝐲 = ({ 𝑔 𝑢𝑖
2 , 𝑔 𝛼𝑖𝜋(𝛽𝑖,𝑦𝑖)𝑢𝑖

2 ∣ 𝑖 ∈ S𝐲 } , ∏
𝑖∈S𝐲

(𝑔 𝛾𝑖
2)𝑢𝑖) .

49

Chapter 4. Equality Tests: Vector Equality With Optional Wildcards

Eval⋆(esk𝐲, {ct𝑖}𝑖∈S𝐲
). Output the result of the test

∏
𝑖∈S𝐲

𝑒(𝑔 𝛼𝑖𝜋(𝛽𝑖,𝑥𝑖)𝑟𝑖
1 𝐻(ID)𝛾𝑖, 𝑔 𝑢𝑖

2) ?=

∏
𝑖∈S𝐲

𝑒(𝑔 𝑟𝑖
1 , 𝑔 𝛼𝑖𝜋(𝛽𝑖,𝑦𝑖)𝑢𝑖

2) ⋅ 𝑒(𝐻(ID), ∏
𝑖∈S𝐲

(𝑔 𝛾𝑖
2)𝑢𝑖).

In this adapted construction, the wildcards are made possible by allowing
the token generator to specify which clients need to contribute a ciphertext
before one can evaluate the predicate over the subset of clients. This idea is
encoded in the token by the value ∏𝑖∈S𝐲

(𝑔 𝛾𝑖
2)𝑢𝑖 and in the ciphertext by the

value 𝐻(ID)𝛾𝑖. The latter also prevents the monitor to combine ciphertext
for different identifiers.

The addition of wildcards to the scheme should be mainly considered an
efficiency improvement, rather than a security improvement, although the
ciphertext security actually slightly improves when one uses wildcards, as the
wildcard components do not leak any information about the matched cipher-
text (discussed above). However, we point out that this adapted construction
is not predicate private. In fact, if wildcards are used in the proposed con-
struction, the token would leak their positions: by looking at a token, it is
possible to tell which components encode a wildcard. But, if we accept this
fact, yet still want to assure that no other information is leaked, we can define
a restricted predicate-privacy game. In this restricted game, we restrict the ad-
versary to only provide challenge inputs with wildcards in the same position,
i.e., we require for challenge inputs 𝑓∗

0 = 𝐲∗
0, 𝑓∗

1 = 𝐲∗
1 that for all 1 ≤ 𝑖 ≤ 𝑛,

𝑦0,𝑖 = ⋆ ⟺ 𝑦1,𝑖 = ⋆.
It is trivial to see that changing the KeyGen or Eval algorithm does not

influence the chosen-ciphertext security. In Section 4.4 we give the security
proofs for the construction with wildcards.

4.3.4 Efficiency

Since the Encrypt and KeyGen algorithms do not use any expensive pair-
ing operations, they can efficiently run on less powerful hardware. For the
Encrypt algorithm it is only needed to compute the prp 𝜋 and three mod-
ular exponentiations. The computational complexity of KeyGen⋆ depends
on the number of non-wildcard components in the predicate. For every
non-wildcard component one evaluation of the prp 𝜋 and three modular
exponentiations are needed.

The Eval algorithm is the only algorithm that requires pairings. To evalu-
ate a token with 𝑛 non-wildcard components, 2𝑛 + 1 pairings are required.

50

4.4. Security Proofs

In the next section we discuss a concrete implementation of the con-
struction and evaluate its performance.

4.4 Security Proofs

4.4.1 Selective Plaintext and Adaptive Predicate Security

We prove Theorem 7, stating that the construction without wildcards is
secure, by using the following lemma and by proving that the construction
with wildcards is selective plaintext private and restricted adaptive predicate
private. Recall that the restricted predicate-private game is almost identical to
our predicate-private game. However, in the restricted game, we additionally
require 𝑦∗

0,𝑖 = ⋆ ⟺ 𝑦∗
1,𝑖 = ⋆ for the challenge inputs 𝐲∗

0, 𝐲∗
1.

Lemma 1. If the construction with wildcards is selective plaintext private and
restricted adaptive predicate private, then the construction without wildcards is
selective plaintext private and adaptive predicate private.

Proof. First, let us look at the selective plaintext privacy. Assume 𝒜 is a
probabilistic polynomial time adversary, having a non-negligible advantage
in winning the selective plaintext-privacy game without wildcards. It is clear
that 𝒜 is also an adversary that has an identical, non-negligible, advantage
in winning the selective plaintext-privacy game with wildcards (however, it
chooses not to use any). This contradicts with the given statement that no
such adversary exists.

For the other part, assume that 𝒜 is a probabilistic polynomial time
adversary, making no wildcard queries, and having a non-negligible advantage
in winning the predicate-privacy game. Note that 𝒜 is also an adversary
that has an identical, non-negligible, advantage in winning the predicate-
privacy gamewith wildcards (however, it chooses not to use any). Specifically,
since 𝒜 chooses its challenge inputs without wildcards, 𝒜 also satisfied the
extra requirement in the restricted predicate-privacy game.

We now give a proof for both selective plaintext privacy as well as re-
stricted predicate privacy for the construction with wildcards.

Proof (sketch). We first define the generic group model setting and all oracle
interactions, including the oracles for encryption and token generation.

Generic group model. Let 𝜙1, 𝜙2, 𝜙𝑇 be distinct random injective mappings
from the domain ℤ𝑝 to {0, 1}𝜆, where 𝜆 > 3 log𝑝. We write 𝔾1 for { 𝜙1(𝑥) ∣
𝑥 ∈ ℤ𝑝 }, 𝔾2 for { 𝜙2(𝑥) ∣ 𝑥 ∈ ℤ𝑝 }, and 𝔾𝑇 for { 𝜙𝑇(𝑥) ∣ 𝑥 ∈ ℤ𝑝 }. The
adversary is given access to an oracle to compute the group actions on 𝔾1,

51

Chapter 4. Equality Tests: Vector Equality With Optional Wildcards

𝔾2, and 𝔾𝑇. Additionally, it is given access to an oracle capable of computing
a non-degenerate bilinear map 𝑒: 𝔾1 × 𝔾2 → 𝔾𝑇. Lastly, we also define a
random oracle to model the hash function 𝐻: {0, 1} → 𝔾1.

Instead of writing 𝜙1(𝑥), we write 𝑔 𝑥
1 . Similarly, we write 𝑔 𝑥

2 for 𝜙2(𝑥)
and 𝑒(𝑔1, 𝑔2)𝑥 for 𝜙𝑇(𝑥).

Hash oracle 𝐻. The challenger keeps track of oracle queries it received
before by maintaining a table. If it has not received an oracle query for the
value ID before, it chooses a random value 𝑡ID ∈ ℤ𝑝 and stores this value in
its table. It returns the value 𝑔 𝑡ID

1 to the querier.
Game interactions. The adversary’s first interaction with the challenger is

to receive the group parameters and the secret keys of the corrupted clients.

Setup The challenger chooses 𝛼𝑖, 𝛾𝑖
𝑅← ℤ∗

𝑝 and 𝛽𝑖
𝑅← 𝒦 for 1 ≤ 𝑖 ≤ 𝑛, just

like in the actual scheme. It also defines the secret keys usk𝑖 and master
secret key msk according to the scheme.

Corruptions The adversary submits its choices for the corrupted clients ̄𝐼
to the challenger. In the selective plaintext-privacy game, the adversary
additionally submits its challenge inputs (ID∗, 𝐱∗

0,𝐼, 𝐱∗
1,𝐼). The challenger

gives the secret keys usk ̄𝐼 of the corrupted clients to the adversary.

Queries The adversary interacts with the challenger by asking the challenger
to encrypt a messages or to generate a token for some predicate. To be able
to refer to a specific query later on in the proof, we label every query with a
query number. Let 𝑗 represent this query number.

Encrypt The challenger answers valid Encrypt queries for a message 𝑥(𝑗)
𝑖

for client 𝑖 and identifier ID(𝑗) similar as in the scheme. It chooses
𝑟(𝑗)

𝑖
𝑅← ℤ∗

𝑝 and returns the ciphertext ct(𝑗)
𝑖,ID,

(𝑔 𝑡
ID(𝑗)

1 , 𝑔 𝑟(𝑗)
𝑖

1 , 𝑔 𝛼𝑖𝜋(𝛽𝑖,𝑥(𝑗)
𝑖)𝑟(𝑗)

𝑖
1 𝑔 𝑡

ID(𝑗)𝛾𝑖
1) .

KeyGen⋆ Token queries for 𝐲(𝑗) are answered according to the scheme as
well. The challenger chooses 𝑢(𝑗)

𝑖
𝑅← ℤ∗

𝑝 for 𝑖 ∈ S𝐲(𝑗) and returns the
token esk(𝑗)

𝐲 ,

({ 𝑔 𝑢(𝑗)
𝑖

2 , 𝑔 𝛼𝑖𝜋(𝛽𝑖,𝑦(𝑗)
𝑖)𝑢(𝑗)

𝑖
2 ∣ 𝑖 ∈ S𝐲 } , ∏

𝑖∈S𝐲

𝑔 𝑢(𝑗)
𝑖 𝛾𝑖

2) ,

to the adversary.

52

4.4. Security Proofs

Proof structure. We prove both selective plaintext privacy and restricted
adaptive predicate privacy through a series of hybrid games.

For selective plaintext privacy the number of games depends on the
number of differentiating components of the challenge inputs—hence the
selective game type. Let 𝑋 denote the set of indices where the components
of 𝐱∗

0 differ from 𝐱∗
1, 𝑋 = { 𝑖 ∣ 𝑥∗

0,𝑖 ≠ 𝑥∗
1,𝑖 }. Let game 𝑘 be identical to

the original game, except that in the challenge phase now the first 𝑘 − 1
components of 𝑋 in the returned challenge vector are chosen at random.
Note that game 𝑘 = 1 is identical to the original game and that in game 𝑘 =
|𝑋| not even an unbounded adversary is able to gain an advantage in winning
the game.

For restricted adaptive predicate privacy, we assume w.l.o.g. that 𝐲∗
0,𝐼 ≠

𝐲∗
1,𝐼, because if 𝐲∗

0,𝐼 = 𝐲∗
1,𝐼, the adversary would not be able to gain an

advantage in the game since this implies 𝐲∗
0 = 𝐲∗

1. Note that this means that
the result of Match⋆ with any allowed ciphertext vector will be false. We
define game 𝑘 identical to the original game, except that in the challenge
phase now the first 𝑘 − 1 components of the returned challenge vector are
chosen at random. Note that game 𝑘 = 1 is identical to the original game
and that in game 𝑘 = 𝑛 not even an unbounded adversary is able to gain an
advantage in winning the game.

For both the selective plaintext-privacy as well as the restricted adaptive
predicate-privacy game, we show that an adversary has at most an advantage
of 𝑂(𝑞2 ⁄ 𝑝) in distinguishing between game 𝑘 and game 𝑘 + 1. Furthermore,
we use another hybrid game to change to a real-or-random based challenge
instead of a left-or-right based challenge. It is not difficult to see that an
adversary gaining an advantage 𝜖 in the left-or-right based game, gains an
advantage of at least 𝜖 ⁄ 2 in the real-or-random based game.

Challenges. Since we changed the game to a real-or-random based game,
the challenge phase changes slightly. The challenger now chooses a bit 𝑏 𝑅←
{0, 1} that is used to determine whether to return the encryption of the
submitted value or a random one. In case of the selective plaintext-privacy
game, the adversary submits a vector 𝐱(𝑐)

𝐼 together with an identifier ID(𝑐)

to the challenger. In case of the restricted predicate-privacy game, the ad-
versary submits a vector 𝐲(𝑐) to the challenger. The challenger chooses
values 𝜈𝑖, 𝜈′

𝑖
𝑅← ℤ∗

𝑝 for 1 ≤ 𝑖 ≤ 𝑛. For a ciphertext challenge it returns the
challenge

ctCh = { (𝑔 𝑡
ID(𝑐)

1 , 𝑔 𝜈𝑖
1 , ct′Ch,𝑖) ∣ 𝑖 ∈ 𝐼 } ,

53

Chapter 4. Equality Tests: Vector Equality With Optional Wildcards

where

ct′Ch,𝑘 =
⎧{
⎨{⎩

𝑔 𝜈𝑘𝛼𝑘𝜋(𝛽𝑘,𝜈′
𝑘)+𝑡

ID(𝑐)𝛾𝑘
1 if 𝑏 = 0

𝑔 𝜈𝑘𝛼𝑘𝜋(𝛽𝑘,𝑥(𝑐)
𝑘)+𝑡

ID(𝑐)𝛾𝑘
1 if 𝑏 = 1.

For a token challenge, it returns the challenge

eskCh = ({ (𝑔 𝜈𝑖
2 , esk′

Ch,𝑖) ∣ 𝑖 ∈ S𝐲 } , ∏
𝑖∈S𝐲

𝑔 𝜈𝑖𝛾𝑖
2) ,

where, if 𝑘 ∈ S𝐲,

esk′
Ch,𝑘 = {

𝑔 𝜈𝑘𝛼𝑘𝜋(𝛽𝑘,𝜈′
𝑘)

2 if 𝑏 = 0
𝑔 𝜈𝑘𝛼𝑘𝜋(𝛽𝑘,𝑦(𝑐)

𝑘)
2 if 𝑏 = 1.

Indistinguishability. We now show that an adversary has at most a negligi-
ble advantage of 𝑂(𝑞2 ⁄ 𝑝) in distinguishing between game 𝑘 and game 𝑘 + 1,

i.e., it is unable to distinguish 𝑔 𝜈𝑘𝛼𝑘𝜋(𝛽𝑘,𝑥(𝑐)
𝑘)+𝑡

ID(𝑐)𝛾𝑘
1 from 𝑔 𝜈′

𝑘
1 for ciphertext

challenges and 𝑔 𝜈𝑘𝛼𝑘𝜋(𝛽𝑘,𝑦(𝑐)
𝑘)

2 from 𝑔 𝜈′
𝑘

2 for token challenges.
As is common in the generic bilinear group model [Sho97], we con-

sider the challenger keeping record of all group elements the adversary
has. It does so by keeping lists 𝑃𝔾,𝑙 of linear polynomials in ℤ𝑝 for each
of the groups 𝔾1, 𝔾2, and 𝔾𝑇. These polynomials use indeterminates for 𝛾𝑖,
𝛼𝑖𝜋(𝛽𝑖, 𝑐𝑖), the 𝑡ID(𝑗)’s, 𝛼𝑖𝜋(𝛽𝑖, 𝑥(𝑗)

𝑖)’s, 𝛼𝑖𝜋(𝛽𝑖, 𝑦(𝑗))’s, 𝑟(𝑗)
𝑖 ’s, and the 𝑢(𝑗)

𝑖 ’s.
To simplify our reasoning, we will only look at polynomials 𝑃𝔾𝑇,𝑙 in 𝔾𝑇.

This is justified as we can transform any polynomial in 𝔾1 or 𝔾2 to a polyno-
mial 𝑃𝔾𝑇,𝑙 in 𝔾𝑇 through an additional query to the pairing oracle.

We can now say that the adversary wins the game if for a random as-
signment to all the indeterminates, any 𝑃𝔾𝑇,𝑖 ≠ 𝑃𝔾𝑇,𝑗 evaluates to the same
value. We shall show that the adversary is not able to query for distinct poly-
nomials 𝑃𝔾𝑇,𝑖, 𝑃𝔾𝑇,𝑗 such that, if the challenger plays the “real” experiment
and if the indeterminates get assigned with random values, they will evaluate
to the same value, except for negligible probability. Then, by the Schwartz
lemma [Sch80] and the extended result of Shoup [Sho97], we can bound this
probability of 𝑃𝔾𝑇,𝑖 ≠ 𝑃𝔾𝑇,𝑗 evaluating to the same value by 𝑂(𝑞2 ⁄ 𝑝) if at
most 𝑞 group elements are given to the adversary.

In the case of a ciphertext challenge, we first have to bring the challenge
response, which is an element of 𝔾1, to the target group 𝔾𝑇. Since the adver-

sary only has (linear combinations of) the elements 𝑔2, 𝑔
𝑢(𝑗)

𝑖
2 , 𝑔 𝛼𝑖𝜋(𝛽𝑖,𝑦(𝑗)

𝑖)𝑢(𝑗)
𝑖

2 ,

54

4.4. Security Proofs

and ∏𝑖∈S𝐲
𝑔 𝑢(𝑗)

𝑖 𝛾𝑖
2 in 𝔾2, it can only bring the challenge to 𝔾𝑇 by pairing with

one of these. Similarly, for token challenges, the adversary can only pair with

the elements 𝑔1, 𝑔
𝑡
ID(𝑗)

1 , 𝑔 𝑟(𝑗)
𝑖

1 , or 𝑔 𝛼𝑖𝜋(𝛽𝑖,𝑥(𝑗)
𝑖)𝑟(𝑗)

𝑖 +𝑡
ID(𝑗)𝛾𝑖

1 in 𝔾1.
The resulting polynomials for these challenge responses are summa-

rized in Table 4.1. Since the group elements are represented by uniformly
independent values, the adversary can only distinguish between game 𝑘 and
game 𝑘 + 1 with more than a negligible advantage if it can construct at least
one of the polynomials in this table.

Linear combinations. We now argue that the adversary cannot construct
any of these challenges by looking at the components it has. We summarize
the polynomials the adversary has access to, again by only looking at the
elements in the target group 𝔾𝑇, in Table 4.2. We have to show that no linear
combination of the polynomials in Table 4.2 equals any of the polynomials in
Table 4.1.

First, we look at the target queries for a ciphertext challenge to prove
selective plaintext privacy and restricted adaptive predicate privacy without
static corruptions. Later, we shall explain that the construction is indistin-
guishable if we allow for static corruptions as well.

Plaintext privacy. Observe that all polynomials for the ciphertext chal-
lenges contain 𝑡ID(𝑐)𝛾𝑘. This means that we only have to consider the forth
column of Table 4.2 and the polynomial 𝑡ID ∑𝑖′∈S

𝐲(𝑗′)
𝑢(𝑗′)

𝑖′ 𝛾𝑖′. However, we

require 𝑡ID(𝑗) = 𝑡ID(𝑐), but we do not have any of the elements in the fourth
column like this: If 𝑡ID(𝑗) = 𝑡ID(𝑐), the adversary has requested an illegal query
by using the challenge identifier ID(𝑐) in a query phase. Therefore, only the
polynomial 𝑡ID(𝑐) ∑𝑖′∈S

𝐲(𝑗′)
𝑢(𝑗′)

𝑖′ 𝛾𝑖′ can be used, where the token query for

𝐲(𝑗′) does not contain a wildcard in position 𝑘. This, in its turn, implies
that the target ciphertext challenge has to contain exactly 𝑡ID(𝑐)𝑢(𝑗′)

𝑘 𝛾𝑘. Let
𝐲(ℓ) be an arbitrary queried vector such that 𝑦(ℓ)

𝑘 ≠ ⋆. Now, by looking at
Table 4.1, we conclude that we are left proving that no linear combination of
the polynomials in Table 4.2 can form either 𝑢(ℓ)

𝑘 (𝜈𝑘𝛼𝑘𝜋(𝛽𝑘, 𝑥(𝑐)
𝑘) + 𝑡ID(𝑐)𝛾𝑘)

or 𝑢(ℓ)
𝑘 𝛼𝑘𝜋(𝛽𝑘, 𝑦(ℓ)

𝑘)(𝜈𝑘𝛼𝑘𝜋(𝛽𝑘, 𝑥(𝑐)
𝑘) + 𝑡ID(𝑐)𝛾𝑘).

55

Chapter 4. Equality Tests: Vector Equality With Optional Wildcards

Ta
b
le

4.
1.

Ta
rg

et
po

ly
no

m
ia

ls
in

bo
th

in
d
is
tin

gu
is
ha

bi
lit

y
ga

m
es

.

C
ip
he
rt
ex
tc
ha
lle
ng
e

𝜈 𝑘
𝛼 𝑘

𝜋(
𝛽 𝑘

,𝑥
(𝑐

)
𝑘

)+
𝑡 ID

(𝑐
)𝛾

𝑘
𝑢(𝑗

)
𝑖

(𝜈
𝑘𝛼

𝑘𝜋
(𝛽

𝑘,
𝑥(𝑐

)
𝑘

)+
𝑡 ID

(𝑐
)𝛾

𝑘)

𝑢(𝑗
)

𝑖
𝛼 𝑖

𝜋(
𝛽 𝑖

,𝑦
(𝑗

)
𝑖

)(
𝜈 𝑘

𝛼 𝑘
𝜋(

𝛽 𝑘
,𝑥

(𝑐
)

𝑘
)+

𝑡 ID
(𝑐

)𝛾
𝑘)

(𝜈
𝑘𝛼

𝑘𝜋
(𝛽

𝑘,
𝑥(𝑐

)
𝑘

)+
𝑡 ID

(𝑐
)𝛾

𝑘)
∑

𝑖∈
S 𝐲

(𝑗
)𝑢(𝑗

)
𝑖

𝛾 𝑖

To
ke
n
ch
al
le
ng
e

𝜈 𝑘
𝛼 𝑘

𝜋(
𝛽 𝑘

,𝑦
(𝑐

)
𝑘

)
𝑡 ID

𝜈 𝑘
𝛼 𝑘

𝜋(
𝛽 𝑘

,𝑦
(𝑐

)
𝑘

)

𝑟(𝑗
)

𝑖
𝜈 𝑘

𝛼 𝑘
𝜋(

𝛽 𝑘
,𝑦

(𝑐
)

𝑘
)

(𝑟
(𝑗

)
𝑖

𝛼 𝑖
𝜋(

𝛽 𝑖
,𝑥

(𝑗
)

𝑖
)+

𝑡 ID
𝛾 𝑖

)𝜈
𝑘𝛼

𝑘𝜋
(𝛽

𝑘,
𝑦(𝑐

)
𝑘

)

Ta
b
le

4.
2.

El
em

en
ts

th
e

ad
ve

rs
ar

y
ca

n
qu

er
y

fo
ri

n
an

in
d
is
tin

gu
is
ha

bi
lit

y
ga

m
e

(u
p

to
lin

ea
rc

om
bi

na
tio

ns
).

1
𝑡 ID

(𝑗
)

𝑟(𝑗
)

𝑖
𝑟(𝑗

)
𝑖

𝛼 𝑖
𝜋(

𝛽 𝑖
,𝑥

(𝑗
)

𝑖
)+

𝑡 ID
(𝑗

)𝛾
𝑖

𝑢(𝑗
′)

𝑖′
𝑢(𝑗

′)
𝑖′

𝑡 ID
(𝑗

)
𝑢(𝑗

′)
𝑖′

𝑟(𝑗
)

𝑖
𝑢(𝑗

′)
𝑖′

(𝑟
(𝑗

)
𝑖

𝛼 𝑖
𝜋(

𝛽 𝑖
,𝑥

(𝑗
)

𝑖
)+

𝑡 ID
(𝑗

)𝛾
𝑖)

𝑢(𝑗
′)

𝑖′
𝛼 𝑖

′𝜋
(𝛽

𝑖′
,𝑦

(𝑗
′)

𝑖′
)

𝑢(𝑗
′)

𝑖′
𝛼 𝑖

′𝜋
(𝛽

𝑖′
,𝑦

(𝑗
′)

𝑖′
)𝑡

ID
(𝑗

)
𝑢(𝑗

′)
𝑖′

𝛼 𝑖
′𝜋

(𝛽
𝑖′

,𝑦
(𝑗

′)
𝑖′

)𝑟
(𝑗

)
𝑖

𝑢(𝑗
′)

𝑖′
𝛼 𝑖

′𝜋
(𝛽

𝑖′
,𝑦

(𝑗
′)

𝑖′
) (

𝑟(𝑗
)

𝑖
𝛼 𝑖

𝜋(
𝛽 𝑖

,𝑥
(𝑗

)
𝑖

)+
𝑡 ID

(𝑗
)𝛾

𝑖)

∑
𝑖′

∈S
𝐲

(𝑗
′)

𝑢(𝑗
′)

𝑖′
𝛾 𝑖

′
𝑡 ID

(𝑗
)
∑

𝑖′
∈S

𝐲
(𝑗

′)
𝑢(𝑗

′)
𝑖′

𝛾 𝑖
′

𝑟(𝑗
)

𝑖
∑

𝑖′
∈S

𝐲
(𝑗

′)
𝑢(𝑗

′)
𝑖′

𝛾 𝑖
′

(𝑟
(𝑗

)
𝑖

𝛼 𝑖
𝜋(

𝛽 𝑖
,𝑥

(𝑗
)

𝑖
)+

𝑡 ID
(𝑗

)𝛾
𝑖)

∑
𝑖′

∈S
𝐲

(𝑗
′)

𝑢(𝑗
′)

𝑖′
𝛾 𝑖

′

56

4.4. Security Proofs

The polynomial 𝑡ID(𝑐)𝑢(ℓ)
𝑘 𝛾𝑘 can be constructed using the expression 𝑡ID(𝑐) ⋅

∑𝑖∈S
𝐲(ℓ)∖{𝑘} 𝑢(ℓ)

𝑖 𝛾𝑖. Now, to cancel this summed term, we look at Table 4.2

and see that summing 𝑢(𝑗′)
𝑖′ (𝑟(𝑗)

𝑖 𝛼𝑖𝜋(𝛽𝑖, 𝑥(𝑗)
𝑖) + 𝑡ID(𝑗)𝛾𝑖) for 𝑗 = 𝑐, 𝑗′ = ℓ, and

𝑖 = 𝑖′ is the only suitable polynomial. However, this introduces a new term
∑𝑖∈S

𝐲(ℓ)∖{𝑘} 𝑢(ℓ)
𝑖 𝜈𝑖𝛼𝑖𝜋(𝛽𝑖, 𝑥(𝑐)

𝑖). In Table 4.2 we only find𝑢(𝑗′)
𝑖′ 𝛼𝑖′𝜋(𝛽𝑖′, 𝑦(𝑗′)

𝑖′)⋅

𝑟(𝑗)
𝑖 that can be used to cancel this new term. Setting 𝑗 = 𝑐, 𝑗′ = ℓ, and 𝑖 = 𝑖′,
and summing results in

∑
𝑖∈S

𝐲(ℓ)∖{𝑘}
𝑢(ℓ)

𝑖 𝛼𝑖𝜋(𝛽𝑖, 𝑦(ℓ)
𝑖)𝜈𝑖.

Therefore, if the adversary queried for a token 𝐲(ℓ) where index 𝑘 is not a
wildcard and where

𝑦(ℓ)
𝑖 = 𝑥(𝑐)

𝑖 for all 𝑖 ∈ S𝐲(ℓ) ∖ {𝑘}, (4.1)

it can cancel this most recent introduced term as well. Now, the adversary
has constructed the polynomial 𝑢(ℓ)

𝑘 𝑡ID(𝑐)𝛾𝑘 and so it is left to construct ei-
ther 𝑢(ℓ)

𝑘 𝜈𝑘𝛼𝑘𝜋(𝛽𝑘, 𝑥(𝑐)
𝑘) or 𝑢(ℓ)

𝑘 𝛼𝑘𝜋(𝛽𝑘, 𝑦(ℓ)
𝑘)𝜈𝑘𝛼𝑘𝜋(𝛽𝑘, 𝑥(𝑐)

𝑘). We claim that
neither is possible.

By again looking at Table 4.2, we see that only 𝑢(𝑗′)
𝑖′ 𝛼𝑖′𝜋(𝛽𝑖′, 𝑦(𝑗′)

𝑖′)𝑟(𝑗)
𝑖 , for

𝑗 = 𝑐, 𝑗′ = ℓ, 𝑖 = 𝑖′ = 𝑘, and 𝑦(ℓ)
𝑘 = 𝑥(𝑐)

𝑘 , is suitable to construct the polyno-
mial 𝑢(ℓ)

𝑘 𝜈𝑘𝛼𝑖𝜋(𝛽𝑖, 𝑥(𝑐)
𝑘). This means that we require both Equation (4.1) and

𝑦(ℓ)
𝑘 = 𝑥(𝑐)

𝑘 to hold. However, this implies that Match⋆(𝐱(𝑐), 𝐲(ℓ)) = true and
such a query for vector 𝐲(ℓ) is not allowed in the real-or-random game.

We try to construct the polynomial 𝑢(ℓ)
𝑘 𝛼𝑘𝜋(𝛽𝑘, 𝑦(ℓ)

𝑘)𝜈𝑘𝛼𝑘𝜋(𝛽𝑘, 𝑥(𝑐)
𝑘) by

looking at Table 4.2. The polynomial 𝑢(𝑗′)
𝑖′ 𝛼𝑖′𝜋(𝛽𝑖′, 𝑦(𝑗′)

𝑖′)(𝑟(𝑗)
𝑖 𝛼𝑖𝜋(𝛽𝑖, 𝑥(𝑗)

𝑖) +
𝑡ID(𝑗)𝛾𝑖) for 𝑗 = 𝑐, 𝑗′ = ℓ, 𝑖 = 𝑖′ = 𝑘 is the only suitable candidate to cancel
the term. However, this introduces the new term 𝑢(ℓ)

𝑘 𝛼𝑘𝜋(𝛽𝑘, 𝑦(ℓ)
𝑘)𝑡ID(𝑐)𝛾𝑘,

which can only be canceled by 𝑢(ℓ)
𝑘 𝛼𝑘𝜋(𝛽𝑘, 𝑦(ℓ)

𝑘)(𝜈𝑘𝛼𝑘𝜋(𝛽𝑘, 𝑥(𝑐)
𝑘) + 𝑡ID(𝑐)

𝛾𝑘)
again. This reintroduces the original term that we wanted to construct. This
means that we always have a term that we cannot cancel out, therefore we
conclude that the adversary cannot construct this polynomial either.

Combining all results, we conclude that there is no linear combination
and thus that the construction is selective plaintext private without static
corruptions.

Restricted adaptive predicate privacy. We now look at the target queries
for a token challenge. We can only construct 𝜈𝑘𝛼𝑘𝜋(𝛽𝑘, 𝑦(𝑐)

𝑘) using the poly-
nomial 𝑢(𝑗′)

𝑘 𝛼𝑘𝜋(𝛽𝑘, 𝑥(𝑗)
𝑘), where we require 𝑗′ = 𝑐 and 𝑥(𝑗)

𝑘 = 𝑦(𝑐)
𝑘 . These

57

Chapter 4. Equality Tests: Vector Equality With Optional Wildcards

polynomials only occur in the last column of Table 4.2. However, the first
cell in the column cannot be used as it does not contain indeterminates of
the type 𝑢. The third and last cell, on the other hand, contain indetermi-
nates that the adversary does not have access to, 𝛼𝑘𝜋(𝛽𝑘, 𝑦(𝑐)

𝑘), or can never
cancel, 𝛾𝑖𝛾𝑖′. Therefore, only the second cell for 𝑖 = 𝑖′ = 𝑘 and 𝑗′ = 𝑐,
𝜈𝑘(𝑟(𝑗)

𝑘 𝛼𝑘𝜋(𝛽𝑘, 𝑥(𝑗)
𝑘) + 𝑡ID(𝑗)𝛾𝑘), seems to be a suitable candidate.

Let the ℓth query be an arbitrary ciphertext query where 𝑥(ℓ)
𝑘 = 𝑦(𝑐)

𝑘 ,
now if we use this polynomial, we introduce the new term 𝜈𝑘𝑡ID(ℓ)𝛾𝑘. Look-
ing at Table 4.2, we see that the only way to cancel this term is to use
𝑡ID(ℓ) ∑𝑖∈S

𝐲(𝑐)
𝑢(𝑐)

𝑖 𝛾𝑖. The additionally introduced terms can be canceled with

𝑢(𝑗′)
𝑖′ (𝑟(𝑗)

𝑖 𝛼𝑖𝜋(𝛽𝑖, 𝑥(𝑗)
𝑖) + 𝑡ID(𝑗)𝛾𝑖) for 𝑖 = 𝑖′, 𝑗 = ℓ, and 𝑗′ = 𝑐. However, this

again introduces the polynomial ∑𝑖∈S
𝐲(𝑐)∖{𝑘} 𝑢(𝑐)

𝑖 𝑟(ℓ)
𝑖 𝛼𝑖𝜋(𝛽𝑖, 𝑥(ℓ)

𝑖), which can

only be canceled by 𝑢(𝑗′)
𝑖′ 𝛼𝑖′𝜋(𝛽𝑖′, 𝑦(𝑗′)

𝑖′)𝑟(𝑗)
𝑖 for 𝑖 = 𝑖′ and 𝑗′ = ℓ, where we

require 𝑥(ℓ)
𝑖 = 𝑦(𝑐)

𝑖 for all 𝑖 ∈ S𝐲(𝑐)∖{𝑘}. Combining this requirement with the

requirement we made earlier, that 𝑥(ℓ)
𝑘 = 𝑦(𝑐)

𝑘 , means that the adversary has
to query for a ciphertext 𝐱(ℓ) such that Match⋆(𝐱(ℓ), 𝐲(𝑐)) = true. Since this
is not allowed in the game, we conclude that no token challenge can be made
from a linear combination of the elements the adversary can query for.

Corruptions. We claim that, since we have proven the construction secure
without corruptions and since the construction uses distinct, uncorrelated,
encryptions keys usk𝑖 for every client 𝑖, the construction is also secure under
static corruptions. To see this, observe that the indistinguishability notion un-
der static corruptions only guarantees indistinguishability of the uncorrupted
vector components. This means that we can ignore the corrupted vector
components and only require the adversary cannot learn the encryption key
of client 𝑗 if it learned the encryption key of client 𝑖.

4.4.2 Chosen-Plaintext Security

The proposed construction is also chosen-plaintext secure as stated in Theo-
rem 8. We remark that the proof does not rely on the use of random oracles.

Proof. We construct a challenger ℬ capable of breaking the ddh assumption
in 𝔾1 by using an adversary 𝒜 that is able to win the chosen-plaintext with
corruptions game with more than a negligible advantage.

We proof this though a series of hybrid games. Let game 𝑗 be the game as
defined in Definition 10, but where the first 𝑗−1 components of the challenge
query are replaced by random elements. Note that game 1 is identical to
the original game and that it is not possible for any adversary to gain an

58

4.5. Implementation and Evaluation

advantage in game 𝑛 + 1. We are left to show that an adversary has at most a
negligible advantage in distinguishing game 𝑗 from game 𝑗 + 1.

Setup The challenger ℬ receives the bilinear group parameters and the ddh
instance (𝐴 = 𝑔 𝑎

1 , 𝐵 = 𝑔 𝑏
1 , 𝑍) ∈ (𝔾1)3. It chooses the hash function 𝐻 and

the encryption keys usk𝑖. It sets encryption key usk𝑗 = (𝐴, 𝛽𝑗
𝑅← 𝒦, 𝛾𝑗

𝑅←
ℤ∗

𝑝) and chooses the rest of the encryption keys according to the scheme. The
public parameters and the encryption keys usk𝑖 are given to the adversary.

Challenge The adversary 𝒜 submits an identifier ID∗ and two vectors 𝐱∗
0,

𝐱∗
1 to the challenger. The challenger chooses 𝑏 𝑅← {0, 1} and sets 𝑔 𝑟𝑗

1 = 𝐵.
Additionally, it picks values 𝑟𝑖

𝑅← ℤ∗
𝑝 for 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛. It gives the challenge

ct𝑖 =
⎧{
⎨{⎩

(𝐻(ID∗), 𝑔 𝑟𝑖
1 , 𝑅 𝑅← 𝔾1) if 𝑖 < 𝑗

(𝐻(ID∗), 𝐵, 𝑍𝜋(𝛽𝑖,𝑥∗
𝑏,𝑖)𝐻(ID∗)𝛾𝑗) if 𝑖 = 𝑗

(𝐻(ID∗), 𝑔 𝑟𝑖
1 , 𝑔 𝛼𝑖𝑟𝑖𝜋(𝛽𝑖,𝑥∗

𝑏,𝑖)
1 𝐻(ID∗)𝛾𝑖) if 𝑖 > 𝑗

for 1 ≤ 𝑖 ≤ 𝑛 to the adversary.
If the challenger is given 𝑍 = 𝑔 𝑎𝑏

1 , then challenge ciphertext is identi-
cally distributed as the challenge ciphertext in game 𝑗 and component 𝑗 is
a real encryption. If the challenger is given 𝑍 𝑅← 𝔾1, then challenge cipher-
text is identically distributed as the challenge ciphertext in game 𝑗 + 1 and
component 𝑗 is a random encryption.

Guess The challenger outputs its guess that𝑍 = 𝑔 𝑎𝑏
1 if the adversary guesses

that it is playing game 𝑗, and outputs its guess that 𝑍 𝑅← 𝔾1 if the adversary
guesses that it is playing game 𝑗 + 1.

If the adversary has a non-negligible advantage in distinguishing between
game 𝑗 and game 𝑗 + 1, the challenger obtains a non-negligible advantage in
solving the ddh problem in group 𝔾1.

4.5 Implementation and Evaluation

We have implemented a prototype of our construction with wildcards to get
a better understanding of its performance. The implementation³ uses the
pairing-based cryptography (pbc) library⁴ that allows one to easily change
the underlying curve and its parameters.
. .

³https://github.com/CRIPTIM/multi-client-monitoring
⁴https://crypto.stanford.edu/pbc/

59

https://github.com/CRIPTIM/multi-client-monitoring
https://crypto.stanford.edu/pbc/

Chapter 4. Equality Tests: Vector Equality With Optional Wildcards

Instantiating the Pseudorandom Permutation Our construction uses a
prp 𝜋 to permute an element in ℤ𝑝. However, since we use the outcome of
the permutation to exponentiate a generator in 𝔾1 and 𝔾2, we can instead
directly map values in ℤ𝑝 to one of these groups respectively. The pseudoran-
dom function (prf) proposed by Naor and Reingold [nr04] exactly achieves
this. Their prf maps a message 𝑥 ∈ ℳ ⊆ {0, … , 2𝑚 − 1} ⊆ ℤ𝑝 using
a key 𝐛 = { 𝑏𝑖

𝑅← ℤ∗
𝑝 ∣ 0 ≤ 𝑖 ≤ 𝑚 } to an element in a group ⟨𝑔⟩ of prime

order 𝑝. The prf 𝐹 is defined as

𝐹(𝐛, 𝑥) = 𝑔𝑏0 ∏𝑚
𝑖=1 𝑏𝑥[𝑖]

𝑖 ,

where 𝑥[𝑖] ∈ {0, 1} denotes the 𝑖th bit of message 𝑥. The advantage of using
this prf over a prp is that it is relatively simple to compute while it is provably
secure under the ddh assumption.

We apply the prf to both the Encrypt and the KeyGen⋆ algorithms to
obtain ciphertexts of the form

ct𝑖 = (𝐻(ID), 𝑔 𝑟𝑖
1 , 𝑔 𝛼𝑖 ∏𝑚

𝑗=1 𝛽𝑥𝑖[𝑗]
𝑖,𝑗 𝑟𝑖

1 𝐻(ID)𝛾𝑖) ,

and tokens of the form

esk𝐲 = ({ 𝑔 𝑢𝑖
2 , 𝑔 𝛼𝑖 ∏𝑚

𝑗=1 𝛽𝑦𝑖[𝑗]
𝑖,𝑗 𝑢𝑖

2 ∣ 𝑖 ∈ 𝑆𝐲 } , ∏
𝑖∈𝑆𝐲

(𝑔 𝛾𝑖
2)𝑢𝑖) .

Notice that we use 𝑏0 = 𝛼𝑖 and 𝑏𝑗 = 𝛽𝑖,𝑗. In addition, observe that it is not
necessary to know the value 𝛼𝑖 to compute a ciphertext or token, as long the
value 𝑔𝛼𝑖

1 , or 𝑔 𝛼𝑖
2 respectively, is known.

Performance Measurements We ran several performance evaluations on
a notebook containing an Intel Core i5-4210U@1.7GHz CPU, running Debian
GNU/Linux. We chose to evaluate the system using an MNT curve [mnt01]
over a 159 bit base field size with embedding degree 6.

As expected from the theoretical performance analysis in Section 4.3.4,
both the KeyGen⋆ and Eval⋆ algorithms scale linearly in the number of non-
wildcard components used. TheKeyGen⋆ algorithm spends, on average, 19ms
to encrypt a non-wildcard component. To evaluate a token that contains no
wildcards using 𝑛 ciphertexts, takes 4.5𝑛 + 10 ms on average. The Setup al-
gorithm scales linearly as well, spending on average 18ms per client to create
their public and private keys. The Encrypt algorithm is the fastest, taking
only 2.6ms for an individual client to encrypt a message 𝑥𝑖 ∈ {0, … , 15}.

60

4.6. Conclusion

5 25 50 100
0

0.5

1

1.5

Number of clients

M
ea
n
tim

e
(s
ec
on

ds
)

KeyGen
Setup
Eval

Figure 4.2. Perfor-
mance measurements
of the implementation
using an MNT-159
curve.

In Figure 4.2 the average computational time is plotted against the num-
ber of clients involved in the computation. No wildcards were used in the
KeyGen⋆ and Eval⋆ algorithms to obtain these timing results, meaning that
the algorithms are identical to KeyGen and Eval, respectively.

Considering an example of the monitoring of several critical infrastruc-
ture operators, we remark that a typical information-sharing community
(e.g., an isac) consists of about 10 parties. So, if every party sends 5 distinct
messages for each identifier (e.g., every party has five subsystems to be moni-
tored), we would require a system of about 50 clients. We see that in such a
realistically sized system we can evaluate about 250 predicates per minute.
Optimizations such as the preprocessing of pairings can increase the number
of predicate evaluations per minute.

4.6 Conclusion

By designing a special-purpose multi-client functional encryption scheme,
it is possible to create a practical privacy-preserving monitoring system. To
achieve this, we defined multi-client predicate-only encryption (mc-poe) and
corresponding security definitions for the protection of both the messages
of the individual clients and the predicates. Our proposed construction for
such an mc-poe scheme is capable of conjunctive equality testing over vector
components which can include wildcards. The performance evaluation of our
implementation shows that the evaluation time of a predicate scales linearly
in the number of clients, where a predicate defined over 20 clients can be
evaluated in a tenth of a second. Additionally, we see that the encryption algo-

61

Chapter 4. Equality Tests: Vector Equality With Optional Wildcards

rithm is very lightweight, making it suitable to run on resource-constrained
devices.

Future workwill include the construction of an mc-poe schemewhichwill
allow for more expressive functionality, while remaining efficient enough to
run in practice and keeping the confidentiality of both the messages and the
predicates. Additionally, further research is needed to construct an mc-poe
scheme that is fully secure in the standard model.

62

.

5 General Predicates
Multi-authority Predicate Encryption

. .

We construct the first multi-client predicate-only encryption for
equality testing in the previous chapter. In this chapter, we con-
tinue along the same lines with functional encryption for various
predicate classes. We propose the first generic construction for
fully secure decentralized multi-authority predicate encryption.
In amulti-authority predicate encryption scheme, ciphertexts are
associated with one or more predicates from various authorities
and only if a user has a set of decryption keys that evaluates all
predicates to ����, the user is able to recover the message. In
a decentralized system, anyone can create a new authority and
issue decryption keys for their own predicates. We introduce
the concept of amulti-authority admissible pair encoding scheme,
and based on these encodings, we give a generic conversion algo-
rithm that allows us to easily combine various predicate encryp-
tion schemes into a multi-authority predicate encryption variant.
The resulting encryption schemes are proven fully secure under
standard subgroup decision assumptions in the random oracle
model. Finally, by instantiating several concrete multi-authority
admissible pair encoding schemes and applying our conversion
algorithm, we are able to create a variety of novel multi-authority
predicate encryption schemes.

This chapter is based on the work “A Multi-authority Approach to
Various Predicate Encryption Types” [���20], published inDesigns,
Codes and Cryptography (����). While this chapter treats the
proposed construction as multi-authority predicate encryption,
we explain in Section 5.1.1 that this concept is a type of multi-client
functional encryption. To answer Research Question 1, we view
the construction as a multi-client functional encryption scheme.

5.1 Introduction

Predicate encryption (pe) is a type of public-key encryption, where the out-

63

Chapter 5. General Predicates: Multi-authority Predicate Encryption

come of decryption is controlled by a relation 𝑅. A user possessing a de-
cryption key associated with value 𝑦, is only able to recover the plaintext
of a ciphertext associated with value 𝑥, if the relation 𝑅(𝑥, 𝑦) holds. Many
different types of pe have been proposed, each characterizable by the family
of relations they support. Examples of pe types include identity-based en-
cryption (ibe) [bf01] (where the relation is equality testing), attribute-based
encryption (abe) [sw05] (equality testing joined with logical and and or
gates), hidden vector encryption (hve) [bw07] (vector equality testing with
wildcard support), and inner-product predicate encryption (ippe) [ksw08]
(testing whether two vectors are orthogonal). Even more advanced schemes,
such as schemes capable of evaluating relations based on regular languages,
exist as well [Wat12].

A drawback of standard pe is that a single party, the authority, is responsi-
ble for creating the decryption keys for all users in the system. As a direct
consequence, this authority can decrypt all messages since the authority has
to be able to create every possible decryption key. Thus, relying on a single
authority has not only consequences for the scalability of the system, but
also for the trust relations. In natural situations, we would rather appoint
multiple authorities, where each authority is responsible for issuing keys in
their own realm. For example, when handling data from a clinical trial, we
demand that onlymedical doctors affiliated to a research institute have access
to the data. A hospital could then be responsible for issuing a decryption key
for “medical doctor,” while a university would be responsible for issuing the
decryption key for “researcher.”

The question whether it is possible to construct such a multi-authority
scheme was first raised by Sahai and Waters [sw05]. In a multi-authority
predicate encryption (ma-pe) scheme, ciphertexts are associated with one or
more predicates from various authorities. Users are then only able to decrypt
the ciphertext if their keys make all predicates associated with the ciphertext
evaluate to true. The first proposed ma-pe constructions [Cha07; cc09;
mke09] either require interaction between all authorities, or solely address
the scalability problem and still require a master secret which can be used
to decrypt all messages. To address both problems at the same time, Lewko
and Waters [lw11] proposed a decentralized scheme. However, a limitation
of all previous proposed ma-pe constructions, is that they only address the
special case of multi-authority attribute-based encryption (ma-abe), rather
than the more general ma-pe.

We propose the first generic framework for creating decentralized multi-
authority predicate encryption. Our framework supports several predicate
types, such as multi-authority ibe, multi-authority abe, and multi-authority

64

5.1. Introduction

ippe. We also provide an instantiation for each of these predicate families.
Since our solution is decentralized, we address both the trust and scalability
issues: No party is required to hold a global master secret and new authorities
can be created without requiring any form of interaction. Lastly, we prove
that the encryption schemes resulting from our framework are fully secure.

Our construction for an ma-pe scheme can be seen as the combination of
multiple parallel instantiations of a (modified) single authority pe scheme
with a “multi-authority layer” on top. Basically, the ma-pe scheme first fixes
the group parameters and every new authority can than instantiate a new
pe scheme in this group. To encrypt a message, a user blinds the message
with a random number and split this random number using additive secret
sharing into various shares. Next, each of the shares are encrypted using the
pe scheme’s public key. Decryption works by first decrypting all shares to
recover the random number and then unblind the blindedmessage. However,
described as such, the scheme would be vulnerable to a collusion attack, i.e.,
users combining their knowledge to gain access to messages they should not
have access to. To see this, assume we have a ciphertext that may only be
decrypted by students older than 21. Now, two colluding users, one with
the “student” attribute and another one with the “over-21” attribute, can
each obtain part of the shares. If they combine their shares they are able to
unblind the blinded message, while neither of them should have been able to.
To prevent this attack, we make sure that during the decryption of a share,
randomness specific to the user is added. Only if the shares of the same user
are combined, this user specific randomness cancels out.

To support a variety of pe schemes for the use in a decentralized ma-
pe scheme, we introduce the concept of multi-authority admissible pair
encoding schemes (ma-pess). An ma-pes can be “compiled” into a pe scheme
compatible with an ma-pe scheme using our conversion algorithm. The
definition of an ma-pes is an extended variant of the recently introduced
concept of pair encoding schemes (pess) [Att14; ac16; ac17]. Such a (multi-
authority admissible) pair encoding scheme describes how a predicate can
be encoded in an encryption scheme, without having to consider the group
structure the scheme is instantiated in. This separation of encoding and
group structure greatly simplifies the construction of new (multi-authority)
pe schemes since it is relatively easy to prove an ma-pes secure compared
to proving the entire encryption scheme secure. After proving the ma-pes
secure, we can simply apply our conversion algorithm to turn the secure
ma-pes into a secure ma-pe scheme.

Using the proposed conversion algorithm, we are able to combine various
pe schemes for different predicates (e.g., ibe, abe, or ippe) into an ma-pe

65

Chapter 5. General Predicates: Multi-authority Predicate Encryption

scheme using and gates between the predicates. While the need for or gates
can be circumvented by writing the global policy in disjunctive normal form
(dnf) and encrypting the plaintext for each of the conjunctive clauses, we
could also directly support or gates by slightly chaning the algorithm: By
using Shamir secret sharing (sss) instead of additive secret sharing, policies
can also contain or gates [lw11].

We prove that applying our conversion algorithm on a secure ma-pes
results in a fully secure ma-pe scheme in the random oracle model. In our full
security game for multiple authorities, several authorities may be corrupted
while the adversary may query the challenger for both the creation of new
authorities and for decryption keys of its choice. We use a variant of the dual
system encryption technique to prove our construction secure. The dual system
proof technique, first introduced in the seminal work by Waters [Wat09]
and later refined by a series of subsequent work [los⁺10; lw10; lw12; cw13],
uses semi-functional ciphertexts and keys in the proofs. A semi-functional
ciphertext can be decrypted using a normal key, and a normal ciphertext
can be decrypted by a semi-functional key (of course, in both cases we still
require that the relation 𝑅 holds). However, a semi-functional ciphertext
can never be decrypted by a semi-functional key, not even if the relation 𝑅
holds. To prove a scheme secure, we use a series of hybrid games. In the final
game, the adversary receives a semi-functional challenge ciphertext and only
semi-functional keys, meaning that the adversary has no chance in correctly
decrypting the challenge ciphertext, and thus making it impossible for the
adversary to gain a non-negligible advantage in winning the game.

5.1.1 Relation to Multi-client Functional Encryption

While in this chapter, we primarily discuss the concept of multi-authority en-
cryption, we note that this is not much different frommulti-client encryption.
The relation between ma-pe and multi-client functional encryption (mc-fe)
for predicates becomes apparent if we interchange the Encrypt and KeyGen
algorithms. We schematically depict the settings in which ma-pe and mc-fe
are typically used in Figure 5.1.

While in an ma-pe scheme, KeyGen is used by one of several authorities
to generate a key specifically for user with identity ID, in an mc-fe scheme,
Encrypt is used by one of several clients to generate a ciphertext specifically
for identifier ID. In ma-pe, this ID is needed to prevent user collusion, while
in mc-fe the ID similarly prevents mix-and-match attacks. Thus, mc-fe for
predicates can be seen as an ma-pe scheme where the clients/authorities
create for every session identifier ID a new message associated with 𝑦𝑖 for a
user with identity ID. Of course, in mc-fe, it is crucial that the ciphertexts

66

5.1. Introduction

user 𝐵user 𝐴

authority a1 authority a2 ⋯ authority a𝑛

ct𝐱

Encrypt({pk𝑖, 𝑥𝑖}, 𝑚)

Decrypt: {𝑚 if ∀𝑖: 𝑅𝑖(𝑥𝑖, 𝑦𝑖) = true
⊥ otherwise

uska𝑖
← KeyGen(msk𝑖, ID𝐵, 𝑦𝑖)

(a) Typical setting of multi-authority predicate encryption.

evaluatorauthority

client 1 client 2 ⋯ client 𝑛

usk𝐲

KeyGen(msk, {𝑦𝑖}, 𝑚)

Decrypt: 𝑓(𝑚) = {𝑚 if ∀𝑖: 𝑅𝑖(𝑥𝑖, 𝑦𝑖) = true
⊥ otherwise

ct𝑖 ← Encrypt(usk𝑖, ID, 𝑥𝑖)

(b) Typical setting of multi-client functional encryption for predicates.

Figure 5.1. The re-
lation between ��-��
and ��-��. We see
from the two figures
that the concepts are
almost identical. Just
the parties, algorithms,
and transmitted data
are termed differently.
One of the more signifi-
cant differences is that
in an ��-�� scheme
the Encrypt algorithm
is public key, while the
in an ��-�� scheme
the corresponding Key-
Gen algorithm requires
knowledge of the msk.

hide the plaintext messages 𝑥𝑖, while in the ma-pe setting the corresponding
KeyGen algorithm does not necessarily needs to hide the values 𝑦𝑖. However,
pe schemes satisfying the predicate-privacy notion also hide these values 𝑦𝑖.
A direct consequence of a pe scheme satisfying the predicate-privacy notion,
is that such a scheme has to be secret key, instead of public key [ssw09]. This
immediately explains why in mc-fe the KeyGen algorithm requires knowledge
of themaster secretmsk, while the corresponding algorithm inma-pe, Encrypt,
can in fact be public key.

It might seem strange at first that in mc-fe for predicates the KeyGen
algorithm also takes a message 𝑚 to encrypt. However, this is very natural in
a monitoring system as described in Section 4.1.1: We want a monitor to only
learn more information (i.e., recover a message) about an incident (encoded
in the relation 𝑅) if the incident actually occurs. Besides the message 𝑚,
the values 𝑦𝑖 can also be hidden. Similar to the predicate-privacy notion, the
plaintext-privacy notion guarantees that the KeyGen algorithm in an mc-fe
scheme hides the values 𝑦𝑖. In Chapter 4, we construct a scheme that satisfies

67

Chapter 5. General Predicates: Multi-authority Predicate Encryption

both the predicate-privacy and the plaintext-privacy notion at the same time.

5.2 Preliminaries

We often work with vectors of group elements (𝑔𝑣1, … , 𝑔𝑣𝑛), written as 𝑔𝐯.
We use the notation for a predicate family by Attrapadung [Att14]. Let
𝑃 = {𝑃𝜅}𝜅∈ℕ𝑐, for some constant 𝑐 ∈ ℕ, denote the predicate family for
relations 𝑃𝜅 : 𝒳𝜅 × 𝒴𝜅 → {true, false}. Here, a relation is equivalent to a
predicate function where 𝒳𝜅, the ciphertext attribute space, and 𝒴𝜅, the key
attribute space, are mapped to a true/false output. A predicate 𝑃𝜅 can be
described by its family index 𝜅. We often use 𝜅(a) to denote that the index
is specific to an authority a .

Our construction uses a Type 1 pairing (see Definition 4) of composite or-
der 𝑁 = 𝑝1𝑝2𝑝3 for distinct primes 𝑝1, 𝑝2, and 𝑝3. We use the function 𝒢1(1𝜆)
to generate the parameters for a composite-order bilinear map for security
parameter 𝜆.

5.2.1 Complexity Assumptions

The security of our construction relies on several instances of the family of
the General Subgroup Decision Assumption [bwy11]. These assumptions
are identical to the assumptions used by the ma-abe scheme of Lewko and
Waters [lw11].

Assumption 4. Let the group parameters gp = (𝑁 = 𝑝1𝑝2𝑝3, 𝔾, 𝔾𝑇, 𝑒, 𝑔) be
generated by 𝒢1(1𝜆) and 𝑔1

𝑅← 𝔾1. Given 𝑔1, it is hard to distinguish ℎ̂ 𝑅← 𝔾
from ℎ̂1

𝑅← 𝔾1. That is, the advantage of any probabilistic polynomial time
(p.p.t.) adversary 𝒜 in distinguishing,

∣Pr[𝒜((gp, 𝑔1), ℎ̂) = 1] − Pr[𝒜((gp, 𝑔1), ℎ̂1) = 1]∣,

is negligible in the security parameter 𝜆.

Assumption 5. Let the group parameters gp = (𝑁 = 𝑝1𝑝2𝑝3, 𝔾, 𝔾𝑇, 𝑒, 𝑔)
be generated by 𝒢1(1𝜆), and 𝑔1, ℎ1, ℎ̂1

𝑅← 𝔾1, ℎ2, ℎ̂2
𝑅← 𝔾2, and 𝑔3

𝑅← 𝔾3.
Given 𝑔1, ℎ1ℎ2, and 𝑔3, it is hard to distinguish ℎ̂1 from ℎ̂1ℎ̂2. That is, the
advantage of any p.p.t. adversary 𝒜 in distinguishing,

∣Pr[𝒜((gp, 𝑔1, ℎ1ℎ2, 𝑔3), ℎ̂1) = 1] − Pr[𝒜((gp, 𝑔1, ℎ1ℎ2, 𝑔3), ℎ̂1ℎ̂2) = 1]∣,

is negligible in the security parameter 𝜆.

68

5.2. Preliminaries

Assumption 6. Let the group parameters gp = (𝑁 = 𝑝1𝑝2𝑝3, 𝔾, 𝔾𝑇, 𝑒, 𝑔)
be generated by 𝒢1(1𝜆), and pick elements 𝑔1, ℎ1, ℎ̂1

𝑅← 𝔾1, ℎ′
2, ℎ̂2

𝑅← 𝔾2,
and ℎ3, ℎ′

3, ℎ̂3
𝑅← 𝔾3. Given 𝑔1, ℎ1ℎ3, and ℎ′

2ℎ′
3, it is hard to distinguish ℎ̂1ℎ̂2

from ℎ̂1ℎ̂3. That is, the advantage of any p.p.t. adversary 𝒜 in distinguishing,

∣Pr[𝒜((gp, 𝑔1, ℎ1ℎ3, ℎ′
2ℎ′

3), ℎ̂1ℎ̂2) = 1]

− Pr[𝒜((gp, 𝑔1, ℎ1ℎ3, ℎ′
2ℎ′

3), ℎ̂1ℎ̂3) = 1]∣ ,

is negligible in the security parameter 𝜆.

Assumption 7. Let the group parameters gp = (𝑁 = 𝑝1𝑝2𝑝3, 𝔾, 𝔾𝑇, 𝑒, 𝑔)
be generated by 𝒢1(1𝜆), and pick 𝑔1

𝑅← 𝔾1, 𝑔2
𝑅← 𝔾2, 𝑔3

𝑅← 𝔾3, and
𝑎, 𝑏, 𝑐, 𝑑, 𝜉 𝑅← ℤ𝑁. Given 𝑔1, 𝑔2, 𝑔3, 𝑔 𝑎

1 , (𝑔1𝑔3)𝑏, 𝑔 𝑐
1 , and 𝑔 𝑎𝑐

1 𝑔 𝑑
3 , it is hard

to distinguish 𝑒(𝑔1, 𝑔1)𝑎𝑏𝑐 from 𝑒(𝑔, 𝑔)𝜉. That is, the advantage of any p.p.t.
adversary 𝒜 in distinguishing,

∣Pr[𝒜((gp, 𝑔1, 𝑔2, 𝑔3, 𝑔 𝑎
1 , (𝑔1𝑔3)𝑏, 𝑔 𝑐

1 , 𝑔 𝑎𝑐
1 𝑔 𝑑

3), 𝑒(𝑔1, 𝑔1)𝑎𝑏𝑐) = 1]
− Pr[𝒜((gp, 𝑔1, 𝑔2, 𝑔3, 𝑔 𝑎

1 , (𝑔1𝑔3)𝑏, 𝑔 𝑐
1 , 𝑔 𝑎𝑐

1 𝑔 𝑑
3), 𝑒(𝑔, 𝑔)𝜉) = 1]∣ ,

is negligible in the security parameter 𝜆.

5.2.2 Multi-authority Predicate Encryption

A decentralized multi-authority predicate encryption (ma-pe) scheme differs
from a single authority pe scheme in several key aspects. Most importantly,
any party can use the global public parameters to create a new authority a .
Using these global parameters, it creates its own public/private key pair for a
predicate indexed by 𝜅(a).

Furthermore, since every authority has its own public key, the encryption
algorithm requires one or more public keys as input. Naturally, only the
public keys of the authorities A involved in the access policy are required
to encrypt a message. Besides the public keys, the algorithm also requires
the ciphertext values 𝑥a for each of the authorities a ∈ A . Note that these
values may come from distinct domains, as this value space 𝒳𝜅(a) depends
on the predicate index 𝜅(a).

Finally, to prevent user collusion, every user in the system get its own
globally unique identity ID from an identity space ℐ𝒟. Decryption keys are
issued to a specific user and are bound to their personal ID. This prevents
collusion attacks in which distinct users try to combine their key to decrypt
a ciphertext that may only be decrypted by users that possess all required
keys themselves.

69

Chapter 5. General Predicates: Multi-authority Predicate Encryption

Definition 11 (Multi-authority Predicate Encryption). A decentralized multi-
authority predicate encryption (ma-pe) scheme is a collection of the following
five probabilistic polynomial time algorithms.

GlobalSetup(1𝜆) → pp. On input of the security parameter 𝜆, the algorithm
outputs the global public parameters pp of the scheme. The output of Glob-
alSetup additionally defines the message space ℳ, the identity space ℐ𝒟,
and a number 𝑁 ∈ ℕ (these may be implicitly defined by pp).

All of the following algorithms (implicitly) use the global public parame-
ters pp.

AuthoritySetup(pp,para) → (pka ,mska). On input of the public parame-
ters pp and some additional parameters para (describing the predicate𝑃𝜅(a)),
the algorithm outputs a public key pka and an authority secret key mska for
authority a . The algorithm AuthoritySetup (implicitly) sets 𝜅(a) to the tu-
ple (𝑁,para).

Encrypt({(pka , 𝑥a)}a∈A , 𝑚) → ct. The algorithm Encrypt takes a set of
public keys {pka} from authorities a ∈ A , values {𝑥a ∈ 𝒳𝜅(a)}a∈A

, and a
message 𝑚 ∈ ℳ as input and outputs a ciphertext ct.

KeyGen(mska , 𝑦, ID) → usk𝑦,ID. The algorithm KeyGen takes an authority
secret key mska of authority a , a value 𝑦 ∈ 𝒴𝜅(a), and an identity ID ∈ ℐ𝒟 as
input and outputs a user secret key usk𝑦,ID.

Decrypt({usk𝑦,ID}𝑦, ct) → {𝑚, ⊥}. On input of user secret keys {usk𝑦,ID},
all issued to the same identity ID, and a ciphertext ct, the algorithm outputs
either a message 𝑚 or the distinctive symbol ⊥.

Correctness Correctness is defined such that if all predicates 𝑃𝜅(a) can
be evaluated to true, the ciphertext can be decrypted with an overwhelm-
ing probability. That is, an ma-pe scheme is correct if for any combination
of ciphertext ct, created using Encrypt with any message 𝑚 ∈ ℳ and val-
ues {𝑥a ∈ 𝒳𝜅(a)}a∈A , together with keys for the authorities a specified in the
ciphertext ct, {usk𝑦a ,ID}a∈A for any identity ID ∈ ℐ𝒟, 𝑃𝜅(a)(𝑥a , 𝑦a) = true,
then

Pr[Decrypt({usk𝑦a ,ID}, ct) ≠ 𝑚] ≤ negl(𝜆),

where the probability is taken over the coins of GlobalSetup, AuthoritySetup,
Encrypt, and KeyGen.

70

5.2. Preliminaries

5.2.3 Multi-authority Predicate Encryption Security

We define security in terms of an indistinguishability game where the adver-
sary may query for several decryption keys and has to decide on the message
encrypted in the challenge ciphertext. The adversary may also query for
the creation of new authorities and also statically corrupt new authorities.
The static corruption of an authority is modeled by letting the adversary
create a public/private key pair for a new authority. The adversary may then
request the challenger to encrypt the challenge message using the public
keys of uncorrupted and corrupted authorities. Note that this implies a static
corruption model similar to [lw11], as none of the authorities associated
with the challenge ciphertext may be corrupted after the challenge phase.
The difference is that we do not require all authorities to be specified during
Setup, but allow for “Authority Setup” queries.

Definition 12 (Full Security of ma-pe). A multi-authority predicate encryp-
tion scheme is fully secure if any p.p.t. adversary 𝒜 has at most a negligible
advantage in winning the following game.

Setup TheGlobalSetup algorithm is run and the challenger creates an empty
set 𝐼 to hold the uncorrupted authorities in the system.

Query 1 The adversary may query the challenger for two types of queries.
Additionally, it can also create new authorities using the global parameters,
i.e., without needing to query the challenger.

• Authority Setup The adversary queries for a new authority by send-
ing the parameters para (describing a predicate) to the challenger.
The challenger runs AuthoritySetup using para and gives the resulting
public key pka to the adversary. Additionally, it adds a to the set of
uncorrupted authorities 𝐼.

• User Secret Key By sending a tuple (a , 𝑦 ∈ 𝒴𝜅(a), ID), where a ∈ 𝐼,
to the challenger, the adversary requests the user secret key usk𝑦,ID ←
KeyGen(mska , 𝑦, ID) from the challenger. If the challenger has received
a key request for the combination (a , ID) before, it aborts the game.¹
Otherwise, it returns the user secret key usk𝑦,ID.

Challenge The adversary sends a tuple (𝑚0, 𝑚1, {𝑥∗
a}a∈A∗) to the challenger,

where A∗ is a set of authorities chosen by the adversary. For each author-
ity a ∈ A∗ the adversary created itself, it also sends the public key pka to
. .

¹The construction of Lewko and Waters [lw11] also requires that no authority may issue a
key to the same user twice, although they do not make this requirement explicit.

71

Chapter 5. General Predicates: Multi-authority Predicate Encryption

the challenger. We denote these authorities created by the adversary by the
set ̄𝐼 = A∗ ∖ 𝐼.

For each ID that was used in a key query, the challenger checks if there
exists an uncorrupted authority a ′ ∈ A∗ ∩ 𝐼, such that either no user se-
cret key query (a ′, 𝑦a′, ID) has been made, or 𝑃𝜅(a′)(𝑥∗

a′, 𝑦a′) = false for the
queried (a ′, 𝑦a′, ID). If so, it chooses a bit 𝑏 𝑅← {0, 1} and returns the chal-
lenge Encrypt({pka}a∈A∗, {𝑥∗

a}a∈A∗, 𝑚𝑏). Otherwise, the challenger aborts
the game.

Query 2 Same asQuery 1, with the additional restriction that new key queries
must not violate the constraint described in Challenge.

Guess The adversary makes a guess 𝑏′ for bit 𝑏. We define the advantage of
the adversary in winning the game as

Pr[𝑏′ = 𝑏] − 1
2.

5.3 Related Work

Up until now, the vast majority of ma-pe schemes proposed in literature are
ma-abe schemes. The first ma-abe schemes either require the introduction
of a central party that is even able to decrypt all ciphertexts [Cha07; mke09]
or do not allow for the addition of new authorities once the system is set
up [cc09]. The first practical ma-abe scheme came with the introduction
of decentralized ma-abe [lw11]. A decentralized ma-pe scheme does not re-
quire any central party and anyone can start a new authority completely
independent of all other parties. However, the current decentralized ma-abe
schemes [lw11; ot13; rw15] only support a single fixed construction and lack
the ability to be used with any predicate family other than abe. Moreover, in
our construction, each authority can choose its own predicate family, which
allows for the combination of several predicate systems, e.g., we can combine
abe and ippe in a single ma-pe scheme.

In 2014, both Wee [Wee14] and Attrapadung [Att14] observed that many
of the schemes proven secure under the dual system encryption technique
could be split into an encoding of the predicate and the group structure this
encoding is instantiated in. Three variants of these encodings exist: predicate
encoding [Wee14], pair encoding [Att14], and the later introduced tag-based
encoding [ksg⁺16]. Several newer works build on various improvements of
the concepts of predicate encodings [cgw15; abs17] and pair encodings [ac16;
ac17; abs17]. Because pair encodings are the most general of the three,
we base our work on pair encodings. For the instantiation of the group

72

5.3. Related Work

structure, composite-order and prime-order groups can be used [cw13; cw14;
ac16]. In this work, we instantiate our decentralized ma-pe scheme in a
composite-order group setting, resulting in the first generic ma-pe scheme.
The previously proposed prime-order group structure cannot be directly
used, since our construction uses a system based on three subgroups, instead
of the more common two subgroups.

The ma-pe schemes resulting from our conversion algorithm are fully
secure, similar to notions used before [lw11; ot13]. Our notion is slightly
more permissive in the sense that not all authorities need to be announced
at the start of the game, but the adversary can query for new authorities
throughout the game. Weaker security notions, e.g., selective or static security
games [rw15], or the use of the generic group model often allow for simpler
and more efficient constructions at the costs of security.

A special use of our ma-pe construction is the combination of various
predicate families into a single authority pe scheme, i.e., the (single) authority
creates multiple key pairs, each for a distinct predicate family. Construc-
tions of these combined pe schemes was first studied for the combination
of ciphertext-policy attribute-based encryption (cp-abe) with key-policy
attribute-based encryption (kp-abe) [ai09; ay15]. Recently, Ambrona, Barthe,
and Schmidt [abs17] give generic transformations to combine arbitrary pred-
icate encodings into a new (single authority) predicate encoding scheme.
Their approach differs from ours, since we do not transform encodings into
an encoding for a combined predicate, but convert our encodings into an
encryption scheme for combined predicates.

We stress that our achieved functionality of decentralizedmulti-authority
inner-product predicate encryption (ma-ippe) is different from the works
on multi-input inner product encryption (mi-ipe) [agr⁺17; dot18]. In inner
product encryption, the decryption algorithm outputs the inner product
of two encrypted vectors, while in ippe, the orthogonality of two vectors
determines whether an encrypted message can be decrypted. The work by
Michalevsky and Joye [mj18] achieves a specific form of ma-ippe under a
notion of decentralization that requires a semi-honest authority and coordi-
nation among the authorities during key generation. Their paper brings up
the challenge to realize what the authors call “full decentralization” which
we tackle in this work. Moreover, our construction achieves this type of “full”
decentralization for various ma-pe types, including ma-ippe.

73

Chapter 5. General Predicates: Multi-authority Predicate Encryption

5.4 Multi-authority Admissible Pair Encoding Scheme

We extend the definition of a pair encoding [Att14; ac17] to a multi-authority
setting. A multi-authority admissible pair encoding scheme (ma-pes) is de-
fined for a single authority a . We shall later show how we can convert several
ma-pess into a single multi-authority predicate encryption (ma-pe) scheme.

We choose to extend the definition of a pair encoding scheme (pes) as
defined by Agrawal and Chase [ac17] since it is well-structured—although
it may be a bit difficult to grasp at first. To get a better understanding of
the scheme, it is convenient to think of the encodings as the variables in
the exponents in the encryption scheme. The values 𝐛 correspond to an
authority’s public key, while 𝐬, ̂𝐬 and 𝐫, ̂𝐫 correspond to the randomness used
in the encryption and key generation algorithms, respectively. The algorithms
EncCt and EncKey encode the ciphertext value 𝑥 and key value 𝑦, respectively,
by returning one or more multivariate polynomials of a restricted form. The
variables 𝑏1, … , 𝑏𝑛 can occur in both the ciphertext and the key encoding, so
they are termed common. These common variables may be multiplied with
non-lone a variable 𝑠𝑖 (in a ciphertext encoding) or 𝑟𝑖 (in a key encoding). A
lone variable, indicated by a hat, e.g., ̂𝑟𝑖, is never multiplied with a common
variable, but may be added as an independent term to the polynomial. Two
special variables, 𝛼 in the key encodings—corresponding to the authority’s
secret key—and 𝜔 in the ciphertext encodings, are always present in at least
one of the polynomials. Basically, the encodings of a ciphertext contain linear
combinations of monomials 𝜔, ̂𝑠𝑖, and 𝑠𝑖𝑏𝑗, while key encodings contain
linear combinations of 𝛼, ̂𝑟𝑖, and 𝑟𝑖𝑏𝑗.

Recall that our construction can be understood as a combination of sev-
eralmulti-authority admissible pe schemes using a “multi-authority layer” that
withstands collusion attacks. During the decryption of such a multi-authority
admissible pe scheme, randomness specific to the user is added to prevent
collusion attacks. In our ma-pes, this randomness is represented in the cor-
rectness requirement by the newly added term 𝜔𝑟0, where 𝑟0 corresponds to
the user’s ID.

Our changes with respect to the pes definition by Agrawal and Chase
[ac17] are highlighted in red.

Definition 13 (Multi-authority Admissible Pair Encoding Scheme). A multi-
authority admissible pair encoding scheme (ma-pes) for a predicate function
𝑃𝜅 : 𝒳𝜅 × 𝒴𝜅 → {false, true} indexed by 𝜅 = (𝑁,par), where par specifies
some parameters, is given by the following four deterministic polynomial-time
algorithms.

AuthorityParam(par) → 𝑛. When given par as input, AuthorityParam out-

74

5.4. Multi-authority Admissible Pair Encoding Scheme

puts 𝑛 ∈ ℕ that specifies the number of common variables, which we denote
by 𝐛 = (𝑏1, … , 𝑏𝑛).

EncCt(𝑁, 𝑥) → (𝑤1, 𝑤2, 𝐜(𝜔, 𝐬, ̂𝐬, 𝐛)). On input 𝑁 ∈ ℕ and 𝑥 ∈ 𝒳(𝑁,par),
EncCt outputs a vector of polynomials 𝐜 = (𝑐1, … , 𝑐𝑤3

) in non-lone variables
𝐬 = (𝑠0, 𝑠1, … , 𝑠𝑤1

) and lone variables 𝜔 and ̂𝐬 = (̂𝑠1, … , ̂𝑠𝑤2
). For ℓ ∈ [𝑤3],

where 𝜂ℓ, 𝜂ℓ,𝑧, 𝜂ℓ,𝑖,𝑗 ∈ ℤ𝑁, the ℓth polynomial is given by

𝑐ℓ(𝜔, 𝐬, ̂𝐬, 𝐛) = 𝜂ℓ𝜔 + ∑
𝑧∈[𝑤2]

𝜂ℓ,𝑧 ̂𝑠𝑧 + ∑
𝑖∈[𝑤1]+

∑
𝑗∈[𝑛]

𝜂ℓ,𝑖,𝑗𝑠𝑖𝑏𝑗.

EncKey(𝑁, 𝑦) → (𝑚1, 𝑚2, 𝐤(𝛼, 𝐫, ̂𝐫, 𝐛)). On input 𝑁 ∈ ℕ and 𝑦 ∈ 𝒴(𝑁,par),
EncKey outputs a vector of polynomials 𝐤 = (𝑘1, … , 𝑘𝑚3

) in non-lone vari-
ables and 𝐫 = (𝑟0, 𝑟1, … , 𝑟𝑚1

) and lone variables 𝛼 and ̂𝐫 = (̂𝑟1, … , ̂𝑟𝑚2
).

For ℓ ∈ [𝑚3], where 𝜙ℓ, 𝜙ℓ,𝑧, 𝜙ℓ,𝑖,𝑗 ∈ ℤ𝑁, the ℓth polynomial is given by

𝑘ℓ(𝛼, 𝐫, ̂𝐫, 𝐛) = 𝜙ℓ𝛼 + ∑
𝑧∈[𝑚2]

𝜙ℓ,𝑧 ̂𝑟𝑧 + ∑
𝑖∈[𝑚1]+

∑
𝑗∈[𝑛]

𝜙ℓ,𝑖,𝑗𝑟𝑖𝑏𝑗.

Pair(𝑁, 𝑥, 𝑦) → (E, Ê). On input 𝑁 and both 𝑥 and 𝑦, Pair outputs two
matrices E and Ê of size (𝑤1 + 1) × 𝑚3 and 𝑤3 × (𝑚1 + 1), respectively.

For clarity, in cases where the specific ma-pes that is being used is relevant,
we index the algorithms by the authority that chooses to use the scheme, e.g.,
EncCta (𝑁, 𝑥) or EncKeya (𝑁, 𝑦).

Correctness Anma-pes is correct if for every𝜅 = (𝑁,par), 𝑥 ∈ 𝒳𝜅, 𝑦 ∈ 𝒴𝜅
such that 𝑃𝜅(𝑥, 𝑦) = true, the following holds symbolically,

𝐬E𝐤T + 𝐜Ê𝐫T = 𝛼𝑠0 − 𝜔𝑟0.

Note that in this extended definition EncCt and EncKey are up to the
variable names identically defined. Furthermore, if we set 𝜔 = 0, then we
have the definition of pair encodings back as defined by [ac17] (except for
the extra term 𝑟0, however, we can see this as an alternative numbering of
the components in 𝐫).

5.4.1 Multi-authority Admissible Pair Encoding Security

For a multi-authority pair encoding scheme to be secure, we require statistical
security, similar to the perfect security notion by Attrapadung [Att14]. For
the security of the encoding, it is helpful to realize that we will apply the

75

Chapter 5. General Predicates: Multi-authority Predicate Encryption

dual system encryption technique by (partially) replicating the scheme in
the various subgroups. The security properties of the encoding will be used
in the semi-functional subgroups, allowing us to prove indistinguishability
among several variants of semi-functional ciphertexts and keys.

Instead of requiring that the value 𝛼 is hidden in the adversary’s view, as
required in a pes, we require, as a security property for our ma-pes, that the
value𝜔 is hidden in the adversary’s view. This property allows us to prove that
an adversary cannot distinguish a correctly distributed challenge ciphertext
from a challenge ciphertext taken from a more restricted distribution. The
property should hold even if user secret keys are given, but only as long as the
values 𝑦 associated to these keys do not let the predicate evaluate to true.

Definition 14 (Statistical Security). A multi-authority admissible pair en-
coding scheme (ma-pes) is statistically secure for 𝜅 = (𝑁,par) ∈ ℕ𝑐, if for
all 𝑥 ∈ 𝒳𝜅 and 𝑦 ∈ 𝒴𝜅, the values (𝑤1, 𝑤2, 𝐜(𝜔, 𝐬, ̂𝐬, 𝐛)) ← EncCt(𝑁, 𝑥) and
(𝑚1, 𝑚2, 𝐤(𝛼, 𝐫, ̂𝐫, 𝐛)) ← EncKey(𝑁, 𝑦), if 𝑃𝜅(𝑥, 𝑦) = false, the distribu-
tions

{𝐬, 𝐜(0, 𝐬, ̂𝐬, 𝐛), 𝐫, 𝐤(0, 𝐫, ̂𝐫, 𝐛)} and {𝐬, 𝐜(𝜔, 𝐬, ̂𝐬, 𝐛), 𝐫, 𝐤(0, 𝐫, ̂𝐫, 𝐛)}

are statistically indistinguishable, where the probability is taken over 𝐛 𝑅←
ℤ𝑛

𝑝 , 𝜔 𝑅← ℤ𝑝, 𝐬 𝑅← ℤ(𝑤1+1)
𝑝 , ̂𝐬 𝑅← ℤ𝑤2𝑝 , 𝐫 𝑅← ℤ(𝑚1+1)

𝑝 , and ̂𝐫 𝑅← ℤ𝑚2𝑝 (i.e.,
the distributions need to be statistically close in the size of 𝑝), for every
prime 𝑝 ∣ 𝑁.

In our security proof for the conversion algorithm (see Section 5.6), we
additionally need to restrict the output of EncKey(𝑁, 𝑦) of an ma-pes. We
require that if, for some ℓ ∈ [𝑚3], the polynomial 𝑘ℓ contains 𝛼, also 𝑟0𝑏1
needs to be present in the polynomial. More specifically, we require that 𝜙ℓ =
𝜙ℓ,0,1. Note that combining this constraint with the correctness property,
we also have that 𝜂ℓ = 𝜂ℓ,0,1.

We give several examples of an ma-pes in Section 5.7.

5.5 Conversion from Encoding to Encryption

A collection of statistically secure ma-pess can be converted to a fully secure
ma-pe scheme using a generic algorithm.

The encryption algorithm can be seen as a combination of the encryp-
tion algorithms of several (modified) pe schemes. First, we encrypt a mes-
sage 𝑚 ∈ 𝔾𝑇 by blinding the message with a random element 𝑒(𝑔1, 𝑔1)Δ.
Next, we (additively) secret share Δ into shares 𝛿a for each of the involved
authorities a ∈ A . For each authority, we encrypt the value 𝑒(𝑔1, 𝑔1)𝛿a using

76

5.5. Conversion from Encoding to Encryption

the randomness 𝛼a𝑠a,0. From the correctness of the ma-pes, we know that a
user having the appropriate keys can combine the ciphertext and keys in such
a way that it obtains the value 𝛼a𝑠a,0 −𝜔a𝑟0. Hence, the user can recover the
value 𝑒(𝑔1, 𝑔1)𝛿a up to a newly introduced random element that has 𝜔a𝑟0 in
the exponent. We use this randomness 𝜔a𝑟0 to prevent user collusion. Recall
that EncCt determines the value𝜔a , while EncKey determines the value 𝑟0. So,
if we additively secret share 0 into the values 𝜔a and choose a fixed value 𝑟0
for each ID, we have that, only if a user is able to obtain 𝑒(𝑔1, 𝑔1)𝛿a+𝜔a𝑟0 for all
all authorities a , the user can combine these values to obtain the randomness
used in the encryption of the message 𝑚, 𝑒(𝑔1, 𝑔1)∑a 𝛿a+0 = 𝑒(𝑔1, 𝑔1)Δ.

Although our employed technique is similar to conversion algorithms
used in single authority predicate encryption (sa-pe) [cw14; ac16; ac17], we
use the fact that the symbol 𝜔, an element part of the ciphertext, is statisti-
cally hidden. In contrast, sa-pe requires 𝛼, an element part of a key, to be
statistically hidden. Therefore, in our employed proof technique, we can
only randomize 𝜔 as part of the ciphertext and not 𝛼 as part of the keys.
As an consequence, we require a composite-order bilinear group with three
subgroups, instead of the common two subgroups. This also implies that we
cannot use the existing constructions for dual system groups [cw14; ac16].

In our construction, we require that identities are random elements from
the identity space ℐ𝒟 = 𝔾. We achieve this by choosing a cryptographic
hash function 𝐻: {0, 1}∗ → 𝔾 and hash the ID to obtain a random element
in 𝔾. In our security proof, we require that the challenger can decide on the
image of 𝐻(ID), Im(𝐻) = 𝔾′ ⊆ 𝔾. This requirement is fulfilled by proving
the construction secure in the programmable random oracle model.

GlobalSetup(1𝜆). The GlobalSetup algorithm first runs 𝒢1(1𝜆) to obtain
the group parameters gp = (𝑁 = 𝑝1𝑝2𝑝3, 𝔾, 𝔾𝑇, 𝑒, 𝑔) and 𝑔1

𝑅← 𝔾1. It sets
the message space ℳ = 𝔾𝑇 and the identity space ℐ𝒟 = 𝔾. It defines a
hash function 𝐻: {0, 1}∗ → 𝔾 and outputs (gp, 𝑔1, 𝐻) as the global public
parameters pp.

AuthoritySetup(pp,para). Given para for an ma-pes, the algorithm runs
AuthorityParam(para) to obtain 𝑛. It picks 𝐯 𝑅← ℤ𝑛

𝑁 and 𝛼 𝑅← 𝔾1, and
sets sk = 𝑔 𝛼

1 . The authority’s pk is (𝑔 𝐯
1 , 𝑒(𝑔1, sk)). The authority’s msk is the

tuple (𝐯, sk).

Encrypt({(pka , 𝑥a)}a∈A , 𝑚). Choose an a ′ ∈ A , pick 𝜔a
𝑅← ℤ𝑁 for each au-

thority a ∈ A ∖ a ′, and set 𝜔a′ = − ∑a∈A∖a′ 𝜔a . Additionally, pick 𝛿a
𝑅← ℤ𝑁

for all a ∈ A and define 𝑒(𝑔1, 𝑔1)Δ = ∏a∈A 𝑒(𝑔1, 𝑔1)𝛿a . Blind the mes-
sage 𝑚 ∈ 𝔾𝑇 using 𝑒(𝑔1, 𝑔1)Δ to obtain ct0 = 𝑚 ⋅ 𝑒(𝑔1, 𝑔1)Δ.

Now, for each authority a ∈ A continue as follows (we frequently

77

Chapter 5. General Predicates: Multi-authority Predicate Encryption

drop the index a—when there is no ambiguity—to simplify notation). Run
EncCta (𝑁, 𝑥) to obtain 𝑤1, 𝑤2, and polynomials (𝑐1, … , 𝑐𝑤3

). For 𝑘 ∈ [𝑤1 +
𝑤2]+, pick 𝑠a,𝑘 ∈ ℤ𝑁, and set cta,1,𝑖 = 𝑔 𝑠a,𝑖

1 for 𝑖 ∈ [𝑤1]+ and

cta,2,ℓ = (𝑔 𝜔a
1)𝜂ℓ ⋅ ∏

𝑧∈[𝑤2]
𝑔 𝜂ℓ,𝑧𝑠a,𝑤1+𝑧

1 ⋅ ∏
𝑖∈[𝑤1]+,𝑗∈[𝑛]

(𝑔 𝑣𝑗
1)𝜂ℓ,𝑖,𝑗𝑠a,𝑖

for ℓ ∈ [𝑤3]. Blind the value 𝑒(𝑔1, 𝑔1)𝛿a by setting cta,0 = 𝑒(𝑔1, 𝑔1)𝛿a ⋅
𝑒(𝑔1, ska)𝑠a,0.

The complete ciphertext is

ct = (ct0, {cta,0, cta,1,0, … , cta,1,𝑤1
, cta,2,1, … , cta,2,𝑤3

}a∈A).

KeyGen(mska , 𝑦, ID). The algorithm EncKeya (𝑁, 𝑦) is run to obtain 𝑚1, 𝑚2,
and polynomials (𝑘1, … , 𝑘𝑚3

). Set uska,1,0 = 𝐻(ID) and pick 𝑟𝑖
𝑅← ℤ𝑁 to

set uska,1,𝑖 = 𝑔 𝑟𝑖
1 for 𝑖 ∈ [𝑚1 + 𝑚2]. Set

uska,2,ℓ = sk𝜙ℓa ⋅ ∏
𝑧∈[𝑚2]

(uska,1,𝑚1+𝑧)𝜙ℓ,𝑧 ⋅ ∏
𝑖∈[𝑚1]+,𝑗∈[𝑛]

(usk𝑣𝑗
a,1,𝑖)

𝜙ℓ,𝑖,𝑗

for ℓ ∈ [𝑚3]. The complete user secret key for 𝑦 ∈ 𝒴𝜅(a) is

usk𝑦,ID = (uska,1,0, … ,uska,1,𝑚1
,uska,2,1, … ,uska,2,𝑚3

).

Note that uska,1,𝑚1+𝑧 for 𝑧 ∈ [𝑚2] are not included in the complete usk.

Decrypt({usk𝑦,ID}𝑦, ct). To decrypt the ciphertext ct, we first decrypt cta,0

for each authority a ∈ A . Run Paira (𝑁, 𝑥a , 𝑦a) to obtain Ea and Êa . Now
compute

cta,0 ⋅
⎛⎜⎜⎜
⎝

∏
𝑖∈[𝑤1]+,
ℓ∈[𝑚3]

𝑒(cta,1,𝑖,uska,2,ℓ)Ea,𝑖,ℓ ⋅ ∏
ℓ∈[𝑤3],
𝑖∈[𝑚1]+

𝑒(cta,2,ℓ,uska,1,𝑖)Êa,ℓ,i
⎞⎟⎟⎟
⎠

−1

= (𝑒(𝑔1, 𝑔1)𝛿a ⋅ 𝑒(𝑔1, ska)𝑠a,0) (𝑒(𝑔1, 𝑔1)𝛼a𝑠a,0−𝜔a𝑟0)−1

= 𝑒(𝑔1, 𝑔1)𝛿a ⋅ 𝑒(𝑔1, 𝑔1)𝛼𝑠a,0 ⋅ 𝑒(𝑔1, 𝑔1)−𝛼a𝑠a,0+𝜔a𝑟0

= 𝑒(𝑔1, 𝑔1)𝛿a ⋅ 𝑒(𝑔1, 𝑔1)𝜔a𝑟0

for some value 𝑟0 independent of a . We can now combine these results to
obtain

∏
a∈A

(𝑒(𝑔1, 𝑔1)𝛿a ⋅ 𝑒(𝑔1, 𝑔1)𝜔a𝑟0) = 𝑒(𝑔1, 𝑔1)∑a∈A 𝛿a ⋅ 𝑒(𝑔1, 𝑔1)∑a∈A 𝜔a𝑟0

= 𝑒(𝑔1, 𝑔1)Δ ⋅ 𝑒(𝑔1, 𝑔1)0𝑟0

= 𝑒(𝑔1, 𝑔1)Δ,

and recover the plaintext 𝑚 = ct0 ⋅ 𝑒(𝑔1, 𝑔1)−Δ.

78

5.6. Security of the Conversion Algorithm

Remark 1 (One-Use Requirement). If the values 𝐛 of an ma-pes are used
multiple times in the same ciphertext, they might not be statistically hidden
anymore and information on 𝜔 might be leaked. Therefore, if we want to
make sure to avoid using (part) of the same 𝐛 multiple times, we may require
that an authority may occur only once in a ciphertext of a corresponding ma-pe
scheme. Such a requirement is similar to the one-use requirement as found
in several abe schemes [los⁺10; lw11; Att14] where the attributes may only
occur once.

Remark 2 (Type of Secret Sharing). Instead of using additive secret sharing
as described above, we could have also decided to use sss. By using sss, we
allow for combining the predicates fromdifferent authorities in the ciphertext
using both and and or gates—like in the ma-abe scheme by Lewko andWaters
[lw11]—while additive secret sharing only allows for combining them using
and gates. However, we can easily emulate or gates by writing the desired
combination of predicates for different authorities in dnf and creating a
new ciphertext for each of the conjunctive clauses. The main advantage of
choosing to use additive secret sharing, is that it simplifies the construction
and the corresponding security proofs.

5.6 Security of the Conversion Algorithm

We prove security similarly to the dual system encryption technique [Wat09]
variant that was used to prove ma-abe secure before [lw11]. As such, we
first introduce semi-functional ciphertext and semi-functional keys. These
semi-functional ciphertexts and keys are solely used in the security proofs
and not in the actual scheme.

5.6.1 Semi-functional Ciphertext

A semi-functional ciphertext can be created by slightly modifying the encryp-
tion algorithm for normal ciphertexts as given before. We define the various
types of semi-functional ciphertext through the algorithm Encrypt.

Encrypt({(pka , 𝑥a)}a∈A , 𝑚;C, {ska}a∈A). This algorithm is similar to En-
crypt, but also takes a set C ⊆ {1, 2, 3} and the authorities’ sk as input.

While in normal ciphertext, we use 𝑔 𝜔a
1 , where ∑a∈A 𝜔a = 0, in semi-

functional ciphertext, we use 𝑔 𝜔a,1
1 𝑔 𝜔a,2

2 𝑔 𝜔a,3
3 and require ∑a∈A 𝜔a,𝑖 = 0 only

for 𝑖 ∈ C. For the values 𝑖 ∈ {1, 2, 3} ∖ C, we pick 𝜔a,𝑖
𝑅← ℤ𝑁 without any

constraint on the sum of these values.
Additionally, the construction of the values cta,1,𝑖 and cta,2,ℓ is depen-

dent on whether the authority a was created by the challenger (i.e., a ∈

79

Chapter 5. General Predicates: Multi-authority Predicate Encryption

𝐼) or by the adversary (i.e., a ∈ ̄𝐼). If a ∈ 𝐼, all of the encoding vari-
ables (𝐬a , 𝐜a(𝜔a , 𝐬a , ̂𝐬a , 𝐛a) are mapped to elements in 𝔾. However, if a ∈ ̄𝐼,
only 𝜔 is mapped to an element in 𝔾 (i.e., 𝑔 𝜔a,1

1 𝑔 𝜔a,2
2 𝑔 𝜔a,3

3), while all other
encoding variables are mapped to elements in 𝔾1 ⊂ 𝔾 just like in normal
ciphertext.

In the proofs, we will use several types of semi-functional ciphertext. We
use Encrypt for C = {1, 2, 3}, C = {1, 2}, and C = {1}.

Pseudo Normal Ciphertext In case we use C = {1, 2, 3}, we say that the
ciphertext is pseudo normal.

Nominally Semi-function Ciphertext In case we use C = {1, 2}, we say
that the ciphertext is nominally semi-functional.

5.6.2 Semi-functional Keys

Besides normal keys, we define pseudo normal keys and two types of semi-
functional keys. We can conveniently define these non-normal keys through
the algorithm KeyGen.

KeyGen(mska , 𝑦; 𝑔′, 𝑟0). The algorithm is similarly defined as the original
KeyGen(mska , 𝑦, ID), however, instead of using the generator 𝑔1 and the hash
function 𝐻: {0, 1}∗ → 𝔾, the generator 𝑔′ and the function 𝐻: ID ↦ (𝑔′)𝑟0

are used. As a consequence, all elements of KeyGen(mska , 𝑦; 𝑔′, 𝑟0) are ele-
ments of the group ⟨𝑔′⟩.

Normal Key Note that a normal key cannot be described using KeyGen:
While we can set 𝑔′ ∈ 𝔾1, the hash function 𝐻 is defined as 𝐻: {0, 1}∗ → 𝔾
and not as 𝐻: {0, 1}∗ → 𝔾1.

Pseudo Normal Key A pseudo normal key is created using KeyGen with
𝑔′ ∈ 𝔾1. It differs from a normal key in that 𝐻 maps to an element in 𝔾1,
𝐻: {0, 1} → 𝔾1, instead of mapping to an element in 𝔾.

Semi-functional Key of Type I A semi-functional key of type I is created
using KeyGen with 𝑔′ = 𝑔1𝑔2, where 𝑔1 ∈ 𝔾1 and 𝑔2 ∈ 𝔾2.

Semi-functional Key of Type II A semi-functional key of type II is created
using KeyGen with 𝑔′ = 𝑔1𝑔3, where 𝑔1 ∈ 𝔾1 and 𝑔3 ∈ 𝔾3.

80

5.6. Security of the Conversion Algorithm

Game Challenge ciphertext ct𝐱∗ Queried key usk𝐲,ID

original Encrypt({𝐱∗}, 𝑚𝑏) KeyGen(𝐲)
0 Encrypt({𝐱∗}, 𝑚𝑏) KeyGen(𝐲; 𝑔1 , 𝑢ID)

1 Encrypt({𝐱∗}, 𝑚𝑏; {1, 2, 3}, {sk}) KeyGen(𝐲; 𝑔1, 𝑢ID)

2,𝑗,1 Encrypt({𝐱∗}, 𝑚𝑏; {1, 2} , {sk}) KeyGen(𝐲; 𝑔12 , 𝑢ID)

2,𝑗,2 Encrypt({𝐱∗}, 𝑚𝑏; {1} , {sk}) KeyGen(𝐲; 𝑔13 , 𝑢ID)

3 Encrypt({𝐱∗}, random ; {1}, {sk}) KeyGen(𝐲; 𝑔13, 𝑢ID)

Figure 5.2. Summary of the sequence of games used in the proof. An explanation of
the difference between the games is given in Section 5.6.3.

5.6.3 Hybrids and Proof Outline

We will prove security through a series of hybrid games. Let Gameoriginal be
the original full security game as defined in Definition 12. Game₀ is defined
similarly, except that in this game only pseudo normal keys are used, by
both the challenger and the adversary, instead of normal keys. In Game₁ the
challenger answers the challenge query with a semi-functional ciphertext
instead of a normal ciphertext as used in Game₀. Let 𝑞 denote the number of
distinct IDs for which the adversary queries keys for. We define two types
of games for each 𝑗 from 1 to 𝑞. In Game2,𝑗,1, the queries for the first 𝑗 −
1 identities are answered with semi-functional keys of type II, while key
queries for the 𝑗th identity are answered with a semi-functional key of type I.
In Game2,𝑗,2, the challenger answers key queries for the first 𝑗 identities with
a semi-functional key of type II. We define Game₃ as the game where all
key queries are answered by semi-functional keys of type II and where the
challenge ciphertext is replaced by an encryption of a random message.

A summary of the sequence of games can be found in Figure 5.2. In this
figure, we also indicate the exact type of semi-functional challenge ciphertext
the adversary receives by specifying the input C to Encrypt. In the cases
where the values 𝜔a,2 or 𝜔a,3 sum to a random value (i.e., C = {1, 2} and
C = {1}), we have to show that the adversary cannot distinguish this from
the case where the values 𝜔a,2 and 𝜔a,3 are guaranteed to sum to zero (i.e.,
C = {1, 2, 3}).

For example, in the hybrid from Game2,𝑗,1 to Game2,𝑗,2, we have to show
that the adversary cannot distinguish a ciphertext created with∑a∈A∗ 𝜔a,2 =
0 from a ciphertext created with ∑a∈A∗ 𝜔a,2 ∈𝑅 ℤ𝑝2

. In this case, we know
that 𝑃({𝑥∗

a}a∈A∗, {𝑦ID,a}a∈A∗) = false, i.e., there exists at least one a ′ ∈ A∗

such that 𝑃𝜅(a′)(𝑥∗
a′, 𝑦ID,a′) = false or no query for (a ′, 𝑦a′, ID) has been

81

Chapter 5. General Predicates: Multi-authority Predicate Encryption

made. Furthermore, observe that the value𝜔a′,2 only occurs in the ciphertext
part (cta′,2,0, … , cta′,2,𝑤3

) of authority a ′, corresponding to the values 𝐜a′ of
EncCta′. By the statistical security requirement (see Definition 14), we know
that this 𝜔a′,2 is statistically hidden in the adversary’s view. From this fact, it
clearly follows that the sum of all 𝜔a,2 (i.e., ∑a∈A∗ 𝜔a,2) includes 𝜔a′,2 and
thus the value of the sum is statistically hidden in the adversary’s view as well.
Hence, the adversary cannot distinguishing whether it received a ciphertext
where the 𝜔a,2 are shares of zero, or independently random shares.

In Game2,𝑞,2, all key queries are answered with a type II key, and we know
that the values 𝜔a,3 do not need to sum to 0. Since there are no further
constraints on 𝜔a,3, we can set all 𝜔a,3

𝑅← ℤ𝑁. Thus, we essentially have
that an adversary cannot distinguish whether the ciphertext components for
any authority have been randomized or not. We use this fact to show that
the sum of the values 𝛿𝑖, as appearing in the semi-functional ciphertext, is
computationally indistinguishable from random as well.

We prove indistinguishability of the hybrids using several lemmas. Com-
bining Lemmas 2 to 6 proves the following theorem.

Theorem 9. For any collection of predicate families for authorities a ∈ A , 𝑃a =
{𝑃𝜅(a)}𝜅(a)∈ℕ𝑐, if each ma-pes for 𝑃𝜅(a) satisfies 𝜙ℓ = 𝜙ℓ,0,1 for all ℓ ∈ [𝑚3] and
is statistically secure (see Definition 14), then the ma-pe scheme converted from
these ma-pess (see Section 5.5) is fully secure (see Definition 12) in the random
oracle model under Assumptions 4 to 7.

Lemma 2 (Gameoriginal ≈𝑐 Game₀). Any adversary 𝒜 having at most a negli-
gible advantage in breaking Assumption 4, has at most a negligible advantage in
distinguishing Gameoriginal from Game₀.

Proof. The challengerℬ receives {(gp, 𝑔1), 𝑇 } as input, where either𝑇 ∈𝑅 𝔾
or 𝑇 ∈𝑅 𝔾1. Now, ℬ plays the following game with 𝒜.

Hash Oracle Upon receiving oracle query ID for the hash function 𝐻, the
challenger ℬ checks if it received the query before, and if so, answers with
the same reply as before. If 𝒜 has not queried for the hash value of ID before,
ℬ picks a value 𝑢ID

𝑅← ℤ𝑁 and replies with 𝑇 𝑢ID.

Setup The challengerℬ sets pp = (gp, 𝑔1) and sends pp to the adversary𝒜.

Authority Queries Request for a new authority a using para are answered
by the challenger by running AuthoritySetup(pp,para). The challenger first
uses AuthorityParam(para) to obtain 𝑛, picks 𝐯 𝑅← ℤ𝑛

𝑁 and 𝛼 𝑅← 𝔾1, and

82

5.6. Security of the Conversion Algorithm

sets sk = 𝑔 𝛼
1 . It sets the public key pk as (𝑔 𝐯

1 , 𝑒(𝑔1, sk)) and the authority
secret key msk as (𝐯, sk). It sends pk to the adversary and adds a to the set 𝐼.

Key Queries Upon receiving a key query (a , 𝑦 ∈ 𝒴𝜅(a), ID) for an uncor-
rupted authority a ∈ 𝐼, ℬ answers the query by first running EncKeya (𝑁, 𝑦) to
obtain 𝑚1, 𝑚2, and polynomials (𝑘1, … , 𝑘𝑚3

). Next, it sets uska,1,0 = 𝑇 𝑢ID

and picks 𝑟𝑖
𝑅← ℤ𝑁 for 𝑖 ∈ [𝑚1 + 𝑚2] to set uska,1,𝑖 = 𝑔 𝑟𝑖

1 for 𝑖 ∈ [𝑚1].
Additionally, it sets

uska,2,ℓ = sk𝜙ℓa ⋅ ∏
𝑧∈[𝑚2]

(uska,1,𝑚1+𝑧)𝜙ℓ,𝑧 ⋅ ∏
𝑖∈[𝑚1]+,𝑗∈[𝑛]

(usk𝑣𝑗
a,1,𝑖)

𝜙ℓ,𝑖,𝑗

for ℓ ∈ [𝑚3]. Finally, it returns the secret key for 𝑦 ∈ 𝒴𝜅(a) as

usk𝑦,ID = (uska,1,0, … ,uska,1,𝑚1
,uska,2,1, … ,uska,2,𝑚3

).

Challenge Ciphertext Whenever 𝒜 requests the ciphertext challenge by
sending (𝑚0, 𝑚1, {𝑥∗

a}a∈A∗) along with the public keys {pka}a∈A∗∩ ̄𝐼, the chal-
lenger ℬ picks 𝑏 𝑅← {0, 1} and encrypts message 𝑚𝑏 as a normal challenge
ciphertext using

Encrypt({pka}a∈A∗, {𝑥∗
a}a∈A∗, 𝑚𝑏).

Now, observe that 𝒜 is playing Gameoriginal if 𝑇 ∈𝑅 𝔾, while it is playing
Game₀ if 𝑇 ∈𝑅 𝔾1. Therefore, if 𝒜 has a non-negligible advantage in decid-
ing which game it is playing, ℬ has a non-negligible advantage in breaking
Assumption 4.

Lemma 3 (Game₀ ≈𝑐 Game₁). Any adversary 𝒜 having at most a negligible
advantage in breaking Assumption 4, has at most a negligible advantage in distin-
guishing Game₀ from Game₁.

Proof. The challengerℬ receives {(gp, 𝑔1), 𝑇 } as input, where either𝑇 ∈𝑅 𝔾
or 𝑇 ∈𝑅 𝔾1. Now, ℬ plays the game with 𝒜 as follows.

Hash Oracle Upon receiving oracle query ID for the hash function 𝐻, the
challenger ℬ checks if it received the query before, and if so, answers with
the same reply as before. If 𝒜 has not queried for the hash value of ID before,
ℬ picks a value 𝑢ID

𝑅← ℤ𝑁 and replies with 𝑔 𝑢ID
1 .

Setup The challengerℬ sets pp = (gp, 𝑔1) and sends pp to the adversary𝒜.

83

Chapter 5. General Predicates: Multi-authority Predicate Encryption

Authority Queries Request for a new authority a using para are answered
by the challenger by running AuthoritySetup(pp,para). The challenger first
uses AuthorityParam(para) to obtain 𝑛, picks 𝐯 𝑅← ℤ𝑛

𝑁 and 𝛼 𝑅← 𝔾1, and
sets sk = 𝑔 𝛼

1 . It sets the public key pk as (𝑔 𝐯
1 , 𝑒(𝑔1, sk)) and the authority

secret key msk as (𝐯, sk). It sends pk to the adversary and adds a to the set 𝐼.

Key Queries Upon receiving a key query (a , 𝑦 ∈ 𝒴𝜅(a), ID) for an uncor-
rupted authority a ∈ 𝐼, ℬ answers the query using a pseudo normal key
using 𝑢ID as 𝑟0, KeyGen(mska , 𝑦; 𝑔1, 𝑢ID).

Challenge Ciphertext Whenever 𝒜 requests the ciphertext challenge by
sending (𝑚0, 𝑚1, {𝑥∗

a}a∈A∗), the challenger ℬ picks 𝑏 𝑅← {0, 1} and encrypts
message 𝑚𝑏 as a challenge ciphertext using 𝑇.

Choose an a ′ ∈ A∗, pick 𝜔a
𝑅← ℤ𝑁 for each authority a ∈ A∗ ∖a ′, and set

𝜔a′ = − ∑a∈A∗∖a′ 𝜔a . Additionally, pick 𝛿a
𝑅← ℤ𝑁, set 𝑒(𝑔1, 𝑔1)𝛿a for all a ∈

A∗, and define 𝑒(𝑔1, 𝑔1)Δ = ∏a∈A∗ 𝑒(𝑔1, 𝑔1)𝛿a . Blind the message 𝑚𝑏 ∈ 𝔾𝑇
using 𝑒(𝑔1, 𝑔1)Δ to obtain ct0 = 𝑚𝑏 ⋅ 𝑒(𝑔1, 𝑔1)Δ.

Now, for each authority a ∈ A∗ continue as follows (we frequently
drop the index a—when there is no ambiguity—to simplify notation). Run
EncCta (𝑁, 𝑥) to obtain 𝑤1, 𝑤2, and polynomials (𝑐1, … , 𝑐𝑤3

).
If a ∈ 𝐼, pick ̃𝑠a,𝑘 ∈ ℤ𝑁 for 𝑘 ∈ [𝑤1 + 𝑤2]+, and set cta,1,𝑖 = 𝑇 ̃𝑠a,𝑖 for

𝑖 ∈ [𝑤1]+, and for ℓ ∈ [𝑤3], set

cta,2,ℓ = (𝑇 𝜔a)𝜂ℓ ⋅ ∏
𝑧∈[𝑤2]

𝑇 𝜂ℓ,𝑧 ̃𝑠a,𝑤1+𝑧 ⋅ ∏
𝑖∈[𝑤1]+,𝑗∈[𝑛]

𝑇 𝜂ℓ,𝑖,𝑗 ̃𝑠a,𝑖𝑣𝑗.

Blind the value 𝑒(𝑔1, 𝑔1)𝛿a by setting cta,0 = 𝑒(𝑔1, 𝑔1)𝛿a ⋅ 𝑒(𝑇 ̃𝑠a,0, 𝑔 𝛼a
1).

If a ∈ ̄𝐼, pick 𝑠a,𝑘 ∈ ℤ𝑁 for 𝑘 ∈ [𝑤1 + 𝑤2]+, and set cta,1,𝑖 = 𝑔 𝑠a,𝑖
1 for

𝑖 ∈ [𝑤1]+, and for ℓ ∈ [𝑤3], set

cta,2,ℓ = (𝑇 𝜔a)𝜂ℓ ⋅ ∏
𝑧∈[𝑤2]

𝑔 𝜂ℓ,𝑧𝑠a,𝑤1+𝑧
1 ⋅ ∏

𝑖∈[𝑤1]+,𝑗∈[𝑛]
(𝑔 𝑣𝑗

1)𝜂ℓ,𝑖,𝑗𝑠a,𝑖 .

Blind the value 𝑒(𝑔1, 𝑔1)𝛿a by setting cta,0 = 𝑒(𝑔1, 𝑔1)𝛿a ⋅ 𝑒(𝑔1, ska)𝑠a,0.
The complete challenge ciphertext is

ct = (ct0, {cta,0, cta,1,0, … , cta,1,𝑤1
, cta,2,1, … , cta,2,𝑤3

}a∈A∗).

Note that 𝑇 = 𝑔 𝑡 (mod 𝑝1)
1 𝑔 𝑡 (mod 𝑝2)

2 𝑔 𝑡 (mod 𝑝3)
3 for unknown 𝑡, and so we

have implicitly used 𝑠a,𝑖 = 𝑡 ̃𝑠a,𝑖 in cta,2,𝑖, making the ciphertext identically
distributed to a normal ciphertext if 𝑇 ∈ 𝔾1. Moreover, we have 𝜔′

a,1 = 𝑡𝜔a

84

5.6. Security of the Conversion Algorithm

(mod 𝑝1), 𝜔′
a,2 = 𝑡𝜔a (mod 𝑝2), and 𝜔′

a,3 = 𝑡𝜔a (mod 𝑝3). Thus, if 𝑇 ∈𝑅
𝔾1 the resulting ciphertext is normal, while if 𝑇 ∈𝑅 𝔾, the resulting cipher-
text is pseudo normal, with ∑a∈A∗ 𝜔′

a,1 = ∑a∈A∗ 𝜔′
a,2 = ∑a∈A∗ 𝜔′

a,3 = 0.
Moreover, depending on the value of 𝑇, ℬ either plays Game₀ or Game₁.

Observe that, by definition, Game₁ ≡ Game2,0,2.

Lemma 4 (Game2,𝑗 − 1,2 ≈𝑐 Game2,𝑗,1). Any adversary 𝒜 having at most a
negligible advantage in breaking Assumption 5, has at most a negligible advantage
in distinguishing Game2,𝑗 − 1,2 from Game2,𝑗,1.

Proof. The challenger ℬ receives {(gp, 𝑔1, ℎ1ℎ2, 𝑔3), 𝑇 } as input, where ei-
ther 𝑇 ∈𝑅 𝔾1 or 𝑇 ∈𝑅 𝔾12. Now, ℬ plays the game with 𝒜 as follows.

Hash Oracle Upon receiving oracle query ID for the hash function 𝐻, the
challenger ℬ checks if it received the query before, and if so, answers with the
same reply as before. If 𝒜 has not queried for the hash value of ID before, ℬ
picks a value 𝑢ID

𝑅← ℤ𝑁. Then, the first 𝑗−1 queries for some ID are answered
with (𝑔1𝑔3)𝑢ID, the 𝑗th query is answered with 𝑇 𝑢ID, while other queries are
answered with 𝑔 𝑢ID

1 .

Setup The challengerℬ sets pp = (gp, 𝑔1) and sends pp to the adversary𝒜.

Authority Queries Request for a new authority a using para are answered
by the challenger by running AuthoritySetup(pp,para). The challenger first
uses AuthorityParam(para) to obtain 𝑛, picks 𝐯 𝑅← ℤ𝑛

𝑁 and 𝛼 𝑅← 𝔾1, and
sets sk = 𝑔 𝛼

1 . It sets the public key pk as (𝑔 𝐯
1 , 𝑒(𝑔1, sk)) and the authority

secret key msk as (𝐯, sk). It sends pk to the adversary and adds a to the set 𝐼.

Key Queries Upon receiving a key query (a , 𝑦 ∈ 𝒴𝜅(a), ID) for an uncor-
rupted authority a ∈ 𝐼, ℬ answers the query depending on the number
distinct ID that have been queried before. If ID is one of the (𝑗 − 1)th first IDs
being queried, ℬ answers with a semi-functional key of type II by sending
KeyGen(mska , 𝑦; 𝑔1𝑔3, 𝑢ID). If the query is for the 𝑗th ID, ℬ answers by send-
ing KeyGen(mska , 𝑦; 𝑇 , 𝑢ID). Otherwise, ℬ answers with a pseudo normal key
by sending KeyGen(mska , 𝑦; 𝑔1, 𝑢ID).

Note that all in cases the key queries are answered with elements from
the hash oracle’s range, creating properly distributed (semi-functional) keys.
Also, observe that if 𝑇 ∈𝑅 𝔾1, a query for the 𝑗th ID is answered with a
pseudo normal key. Otherwise, if 𝑇 ∈𝑅 𝔾12, the query is answered with a
semi-functional key of type I.

85

Chapter 5. General Predicates: Multi-authority Predicate Encryption

Challenge Ciphertext Whenever 𝒜 requests the ciphertext challenge by
sending (𝑚0, 𝑚1, {𝑥∗

a}a∈A∗), the challenger ℬ picks 𝑏 𝑅← {0, 1} and encrypts
message 𝑚𝑏 as a challenge ciphertext using ℎ1ℎ2 and 𝑔3.

Choose an a ′ ∈ A∗, pick 𝜔′
a,12

𝑅← ℤ𝑁 for each authority a ∈ A∗ ∖ a ′,
and set 𝜔′

a′,12 = − ∑a∈A∗∖a′ 𝜔′
a,12. Additionally, pick 𝜔′

a,3, 𝛿a
𝑅← ℤ𝑁, and set

𝑒(𝑔1, 𝑔1)𝛿a for all a ∈ A∗, and define 𝑒(𝑔1, 𝑔1)Δ = ∏a∈A∗ 𝑒(𝑔1, 𝑔1)𝛿a . Blind
the message 𝑚𝑏 ∈ 𝔾𝑇 using 𝑒(𝑔1, 𝑔1)Δ to obtain ct0 = 𝑚𝑏 ⋅ 𝑒(𝑔1, 𝑔1)Δ.

Now, for each authority a ∈ A∗ continue as follows (we frequently
drop the index a—when there is no ambiguity—to simplify notation). Run
EncCta (𝑁, 𝑥) to obtain 𝑤1, 𝑤2, and polynomials (𝑐1, … , 𝑐𝑤3

).
If a ∈ 𝐼, pick ̃𝑠a,𝑘 ∈ ℤ𝑁 for 𝑘 ∈ [𝑤1 +𝑤2]+, and set cta,1,𝑖 = (ℎ1ℎ2𝑔3) ̃𝑠a,𝑖

for 𝑖 ∈ [𝑤1]+, and for ℓ ∈ [𝑤3], set

cta,2,ℓ = ((ℎ1ℎ2)𝜔′
a,12(𝑔3)𝜔′

a,3)
𝜂ℓ

⋅ ∏
𝑧∈[𝑤2]

(ℎ1ℎ2𝑔3)𝜂ℓ,𝑧 ̃𝑠a,𝑤1+𝑧 ⋅ ∏
𝑖∈[𝑤1]+,𝑗∈[𝑛]

(ℎ1ℎ2𝑔3)𝜂ℓ,𝑖,𝑗 ̃𝑠a,𝑖𝑣𝑗.

Blind the value 𝑒(𝑔1, 𝑔1)𝛿a by setting cta,0 = 𝑒(𝑔1, 𝑔1)𝛿a ⋅ 𝑒((ℎ1ℎ2) ̃𝑠a,0, 𝑔 𝛼a
1).

If a ∈ ̄𝐼, pick 𝑠a,𝑘 ∈ ℤ𝑁 for 𝑘 ∈ [𝑤1 + 𝑤2]+, and set cta,1,𝑖 = 𝑔 𝑠a,𝑖
1 for

𝑖 ∈ [𝑤1]+, and for ℓ ∈ [𝑤3], set

cta,2,ℓ = ((ℎ1ℎ2)𝜔′
a,12(𝑔3)𝜔′

a,3)
𝜂ℓ

⋅ ∏
𝑧∈[𝑤2]

𝑔 𝜂ℓ,𝑧𝑠a,𝑤1+𝑧
1 ⋅ ∏

𝑖∈[𝑤1]+,𝑗∈[𝑛]
(𝑔 𝑣𝑗

1)𝜂ℓ,𝑖,𝑗𝑠a,𝑖 .

Blind the value 𝑒(𝑔1, 𝑔1)𝛿a by setting cta,0 = 𝑒(𝑔1, 𝑔1)𝛿a ⋅ 𝑒(𝑔1, ska)𝑠a,0.
The complete challenge ciphertext is

ct = (ct0, {cta,0, cta,1,0, … , cta,1,𝑤1
, cta,2,1, … , cta,2,𝑤3

}a∈A∗).

To see that this is properly distributed as a nominally semi-functional ci-
phertext, observe that 𝜔′

a,12 mod 𝑝1 is independent of 𝜔′
a,12 mod 𝑝2. More-

over, note that (for all 𝑖) the values 𝑠a,𝑖 mod 𝑝1, 𝑠a,𝑖 mod 𝑝2, and 𝑠a,𝑖
mod 𝑝3 are mutually independent. So, the given ciphertext is distributed as
a nominally semi-functional one, and thus, we are left to prove that adver-
sary 𝒜 cannot distinguish a pseudo normal ciphertext (with C = {1, 2, 3})
from a nominally semi-functional ciphertext (with C = {1, 2}).

Let a ′ ∈ A∗ ∩𝐼 be an authority for which 𝒜 cannot decrypt the ciphertext
component cta′,0 because 𝑃a′(𝑥∗

a′, 𝑦a′) = false. Such an authority exists as
otherwise 𝒜 would be able to trivially decrypt the challenge ciphertext. Now,

86

5.6. Security of the Conversion Algorithm

observe that all values 𝜔′
a,3 look random for a ∈ A∗ ∖ a ′, while 𝜔′

a′,3 ∈𝑅 ℤ𝑁
for nominally semi-functional ciphertext and 𝜔′

a′,3 = − ∑a∈A∗∖a′ 𝜔′
a,3 for

pseudo normal ciphertext. Hence, 𝒜’s view can at most contain information
about 𝜔′

a,3 on the values {𝐬a′, 𝐜a′(0, 𝐬a′, ̂𝐬a′, 𝐛a′), 𝐫a′, 𝐤a′(0, 𝐫a′, ̂𝐫a′, 𝐛a′)} in
the subgroup 𝔾3 (remember, 𝑃a′(𝑥∗

a′, 𝑦a′) = false for the 𝑦a′ of the 𝑗th ID).
No other information about the values in these subgroups is given by any of
the key query responses (note 𝐛a′ is independent of 𝐛a). By the statistical
security property (see Definition 14), we know that this view is now indistin-
guishable from {𝐬a′, 𝐜a′(𝜔a′, 𝐬a′, ̂𝐬a′, 𝐛a′), 𝐫a′, 𝐤a′(0, 𝐫a′, ̂𝐫a′, 𝐛a′)}, the view
of a nominally semi-functional ciphertext. Hence, the ciphertext is distrib-
uted correctly according to the adversary’s view. Moreover, depending on
the value of 𝑇, ℬ either plays Game2,𝑗 − 1,2 or Game2,𝑗,1.

Lemma 5 (Game2,𝑗,1 ≈𝑐 Game2,𝑗,2). Any adversary 𝒜 having at most a negli-
gible advantage in breaking Assumption 6, has at most a negligible advantage in
distinguishing Game2,𝑗,1 from Game2,𝑗,2.

Proof. The challenger ℬ receives {(gp, 𝑔1, ℎ1ℎ3, ℎ′
2ℎ′

3), 𝑇 } as input, where
either 𝑇 ∈𝑅 𝔾12 or 𝑇 ∈𝑅 𝔾13. Now, ℬ plays the game with 𝒜 as follows.

Hash Oracle Upon receiving oracle query ID for the hash function 𝐻, the
challenger ℬ checks if it received the query before, and if so, answers with the
same reply as before. If 𝒜 has not queried for the hash value of ID before, ℬ
picks a value 𝑢ID

𝑅← ℤ𝑁. Then, the first 𝑗−1 queries for some ID are answered
with (ℎ1ℎ3)𝑢ID, the 𝑗th query is answered with 𝑇 𝑢ID, while other queries are
answered with 𝑔 𝑢ID

1 .

Setup The challengerℬ sets pp = (gp, 𝑔1) and sends pp to the adversary𝒜.

Authority Queries Request for a new authority a using para are answered
by the challenger by running AuthoritySetup(pp,para). The challenger first
uses AuthorityParam(para) to obtain 𝑛, picks 𝐯 𝑅← ℤ𝑛

𝑁 and 𝛼 𝑅← 𝔾1, and
sets sk = 𝑔 𝛼

1 . It sets the public key pk as (𝑔 𝐯
1 , 𝑒(𝑔1, sk)) and the authority

secret key msk as (𝐯, sk). It sends pk to the adversary and adds a to the set 𝐼.

Key Queries Upon receiving a key query (a , 𝑦 ∈ 𝒴𝜅(a), ID) for an uncor-
rupted authority a ∈ 𝐼, ℬ answers the query depending on the number
distinct ID that have been queried before. If ID is one of the (𝑗 − 1)th first IDs
being queried, ℬ answers with a semi-functional key of type II by sending

87

Chapter 5. General Predicates: Multi-authority Predicate Encryption

KeyGen(mska , 𝑦; ℎ1ℎ3, 𝑢ID). If the query is for the 𝑗th ID, ℬ answers by send-
ing KeyGen(mska , 𝑦; 𝑇 , 𝑢ID). Otherwise, ℬ answers with a pseudo normal key
by sending KeyGen(mska , 𝑦; 𝑔1, 𝑢ID).

Note that all cases the key queries are answered with elements from the
hash oracle’s range, creating properly distributed semi-functional keys. Also,
observe that if 𝑇 ∈𝑅 𝔾12, a query for the 𝑗th ID is answered with a semi-
functional key of type I, and otherwise, if 𝑇 ∈𝑅 𝔾13, the query is answered
with a semi-functional key of type II.

Challenge Ciphertext Whenever 𝒜 requests the ciphertext challenge by
sending (𝑚0, 𝑚1, {𝑥∗

a}a∈A∗), the challenger ℬ picks 𝑏 𝑅← {0, 1} and encrypts
message 𝑚𝑏 as a challenge ciphertext using 𝑔1 and ℎ′

2ℎ′
3.

Choose an a ′ ∈ A∗, pick 𝜔′
a,1

𝑅← ℤ𝑁 for each authority a ∈ A∗ ∖ a ′,
and set 𝜔′

a′,1 = − ∑a∈A∗∖a′ 𝜔′
a,1. Additionally, pick 𝜔′

a,23, 𝛿a
𝑅← ℤ𝑁, and set

𝑒(𝑔1, 𝑔1)𝛿a for all a ∈ A∗, and define 𝑒(𝑔1, 𝑔1)Δ = ∏a∈A∗ 𝑒(𝑔1, 𝑔1)𝛿a . Blind
the message 𝑚𝑏 ∈ 𝔾𝑇 using 𝑒(𝑔1, 𝑔1)Δ to obtain ct0 = 𝑚𝑏 ⋅ 𝑒(𝑔1, 𝑔1)Δ.

Now, for each authority a ∈ A∗ continue as follows (we frequently
drop the index a—when there is no ambiguity—to simplify notation). Run
EncCta (𝑁, 𝑥) to obtain 𝑤1, 𝑤2, and polynomials (𝑐1, … , 𝑐𝑤3

).
If a ∈ 𝐼, pick 𝑠a,𝑘 ∈ ℤ𝑁 for 𝑘 ∈ [𝑤1 +𝑤2]+, and set cta,1,𝑖 = (𝑔1ℎ′

2ℎ′
3)𝑠a,𝑖

for 𝑖 ∈ [𝑤1]+, and for ℓ ∈ [𝑤3], set

cta,2,ℓ = ((𝑔1)𝜔′
a,1(ℎ′

2ℎ′
3)𝜔′

a,23)
𝜂ℓ

⋅ ∏
𝑧∈[𝑤2]

(𝑔1ℎ′
2ℎ′

3)𝜂ℓ,𝑧𝑠a,𝑤1+𝑧 ⋅ ∏
𝑖∈[𝑤1]+,𝑗∈[𝑛]

(𝑔1ℎ′
2ℎ′

3)𝜂ℓ,𝑖,𝑗𝑠a,𝑖𝑣𝑗.

Blind the value 𝑒(𝑔1, 𝑔1)𝛿a by setting cta,0 = 𝑒(𝑔1, 𝑔1)𝛿a ⋅ 𝑒(𝑔 𝑠a,0
1 , 𝑔 𝛼a

1).
If a ∈ ̄𝐼, pick 𝑠a,𝑘 ∈ ℤ𝑁 for 𝑘 ∈ [𝑤1 + 𝑤2]+, and set cta,1,𝑖 = 𝑔 𝑠a,𝑖

1 for
𝑖 ∈ [𝑤1]+, and for ℓ ∈ [𝑤3], set

cta,2,ℓ = ((𝑔1)𝜔′
a,1(ℎ′

2ℎ′
3)𝜔′

a,23)
𝜂ℓ

⋅ ∏
𝑧∈[𝑤2]

𝑔 𝜂ℓ,𝑧𝑠a,𝑤1+𝑧
1 ⋅ ∏

𝑖∈[𝑤1]+,𝑗∈[𝑛]
(𝑔 𝑣𝑗

1)𝜂ℓ,𝑖,𝑗𝑠a,𝑖 .

Blind the value 𝑒(𝑔1, 𝑔1)𝛿a by setting cta,0 = 𝑒(𝑔1, 𝑔1)𝛿a ⋅ 𝑒(𝑔1, ska)𝑠a,0.
The complete challenge ciphertext is

ct = (ct0, {cta,0, cta,1,0, … , cta,1,𝑤1
, cta,2,1, … , cta,2,𝑤3

}a∈A∗).

To see that this is properly distributed as a semi-functional ciphertext,
first observe that 𝜔′

a,23 (mod 𝑝2) is independent of 𝜔′
a,23 (mod 𝑝3). More-

over, note that (for all 𝑖) the values 𝑠a,𝑖 (mod 𝑝1), 𝑠a,𝑖 (mod 𝑝2), and 𝑠a,𝑖

88

5.6. Security of the Conversion Algorithm

(mod 𝑝3) are mutually independent. So, the given ciphertext is distributed
as a semi-functional one, and thus, we are left to prove that adversary 𝒜
cannot distinguish a nominally semi-functional ciphertext (with C = {1, 2})
from a semi-functional ciphertext (with C = {1}).

Let a ′ ∈ A∗ ∩𝐼 be an authority for which 𝒜 cannot decrypt the ciphertext
component cta′,0 because 𝑃a′(𝑥∗

a′, 𝑦a′) = false. Such an authority exists, as
otherwise ℬ would have aborted the game or 𝒜 would have been able to triv-
ially decrypt the challenge ciphertext. Now, observe that all values 𝜔′

a,23
(mod 𝑝2) look random for a ∈ A∗ ∖ a ′, while 𝜔′

a′,23 ∈𝑅 ℤ𝑁 (mod 𝑝2)
for semi-functional ciphertext and 𝜔′

a′,23 = − ∑a∈A∗∖a′ 𝜔′
a,23 (mod 𝑝2) for

nominally semi-functional ciphertext. (In both nominally semi-functional
and semi-functional ciphertext, all values 𝜔′

a,23 (mod 𝑝3) for a ∈ A∗, are al-
ready random.) Hence, 𝒜’s view can at most contain information about 𝜔′

a,23
(mod 𝑝2) on the values {𝐬a′, 𝐜a′(0, 𝐬a′, ̂𝐬a′, 𝐛a′), 𝐫a′, 𝐤a′(0, 𝐫a′, ̂𝐫a′, 𝐛a′)} in
the subgroup 𝔾2 (remember, 𝑃a′(𝑥∗

a′, 𝑦a′) = false for the 𝑦a′ of the 𝑗th ID).
No other information about the values in these subgroups is given by any of
the key query responses (note 𝐛a′ is independent of 𝐛a). By the statistical
security property (see Definition 14), we know that this view is now indistin-
guishable from {𝐬a′, 𝐜a′(𝜔a′, 𝐬a′, ̂𝐬a′, 𝐛a′), 𝐫a′, 𝐤a′(0, 𝐫a′, ̂𝐫a′, 𝐛a′)}, the view
corresponding to a semi-functional ciphertext. Hence, the ciphertext is dis-
tributed correctly according to the adversary’s view. Moreover, depending
on the value of 𝑇, ℬ either plays Game2,𝑗,1 or Game2,𝑗,2.

Lemma 6 (Game2,𝑞,2 ≈𝑐 Game₃). Any p.p.t. adversary 𝒜, making at most 𝑞
key queries for distinct IDs and having at most a negligible advantage in breaking
Assumption 7, has at most a negligible advantage in distinguishing Game2,𝑞,2

from Game₃.

Proof. Note that inGame2,𝑞,2, the challenge ciphertext is semi-functional and
all key queries are answered with a semi-functional key of type II. We have
to prove that the adversary 𝒜 cannot distinguish whether, for some a ∈ A ,
cta,0 is replaced by a random element in ℤ𝑁 or not.

The challenger ℬ receives (gp, 𝑔1, 𝑔2, 𝑔3, 𝑔 𝑎
1 , (𝑔1𝑔3)𝑏, 𝑔 𝑐

1 , 𝑔 𝑎𝑐
1 𝑔 𝑑

3) and 𝑇,
where either 𝑇 = 𝑒(𝑔1, 𝑔1)𝑎𝑏𝑐 or 𝑇 ∈𝑅 𝔾𝑇. Now, ℬ plays the game with 𝒜
as follows.

Hash Oracle Upon receiving oracle query ID for the hash function 𝐻, the
challenger ℬ checks if it received the query before, and if so, answers with
the same reply as before. If 𝒜 has not queried for the hash value of ID
before, ℬ picks a value 𝑢ID

𝑅← ℤ𝑁. It answers the query with 𝐵−1(𝑔1𝑔3)𝑢ID =
(𝑔1𝑔3)−𝑏+𝑢ID.

89

Chapter 5. General Predicates: Multi-authority Predicate Encryption

Setup The challengerℬ sets pp = (gp, 𝑔1) and sends pp to the adversary𝒜.

Authority Queries Request for a new authority a using para are answered
by the challenger by running AuthoritySetup(pp,para). The challenger first
uses AuthorityParam(para) to obtain 𝑛, picks 𝐯 𝑅← ℤ𝑛

𝑁 and ̃𝛼 𝑅← ℤ𝑁, and
sets the public key pk as (𝑔 𝑎+ ̃𝑣1

1 , 𝑔 𝑣2
1 , … , 𝑔 𝑣𝑛

1 , 𝑒(𝑔 𝑎
1 , (𝑔1𝑔3)𝑏)𝑒(𝑔1, 𝑔1)�̃�) and

(thereby indirectly) setting the authority secret key msk = (𝑣1 = 𝑎 +
̃𝑣1, 𝑣2, … , 𝑣𝑛, 𝑔 𝑎𝑏+�̃�

1). It sends pk to the adversary and adds a to the set 𝐼.

Key Queries Upon receiving a key query (a , 𝑦 ∈ 𝒴𝜅(a), ID) for an un-
corrupted authority a ∈ 𝐼, ℬ answers the query with a semi-functional
key of type II. The challenger ℬ computes KeyGen(ska , 𝑦; 𝑔1𝑔3, 𝑢ID) as fol-
lows. First, it sets uska,1,0 = (𝑔1𝑔3)−𝑏+𝑢ID and uska,1,𝑖 = (𝑔1𝑔3)𝑟𝑖. Next,
to construct the values uska,2,ℓ, consider two cases. Either 𝑘ℓ contains
both the symbol 𝛼 and 𝑏1𝑟0, or it does not contain this combination (i.e.,
𝜙ℓ = 𝜙ℓ,0,1, see Section 5.4.1; symbols 𝑏1 and 𝑟0 may occur separately, but
not in the combination 𝑏1𝑟0). In the case that 𝛼 and 𝑏1𝑟0 do not occur
in 𝑘ℓ, ℬ can create uska,2,ℓ using the values uska,1,0 and 𝑟1, … , 𝑟𝑚2

; and
𝑔 𝑎+ ̃𝑣1

1 𝑔 ̃𝑣1
3 and 𝑣2, … , 𝑣𝑛 (and, of course, the values 𝜙ℓ, 𝜙ℓ,𝑧, and 𝜙ℓ,𝑖,𝑗). In

the case that both 𝛼 and 𝑏1𝑟0 occur in 𝑘ℓ, observe that ℬ needs to compute
(𝑔1𝑔3)𝜙ℓ𝛼+∑𝑧∈[𝑚2] 𝜙ℓ,𝑧 ̂𝑟𝑧+∑𝑖∈[𝑚1]+,𝑗∈[𝑛] 𝜙ℓ,𝑖,𝑗𝑟𝑖𝑏𝑗, where we have that

𝑔 𝜙ℓ𝛼+𝜙ℓ,0,1𝑟0𝑏1
1 = 𝑔 𝜙ℓ(𝑎𝑏+�̃�)+𝜙ℓ,0,1(−𝑏+𝑢ID)(𝑎+ ̃𝑣1)

1

= 𝑔 𝜙ℓ((𝑎𝑏+�̃�)+(−𝑏+𝑢ID)(𝑎+ ̃𝑣1))
1 (since, 𝜙ℓ = 𝜙ℓ,0,1)

= 𝑔 𝜙ℓ(�̃�−𝑏 ̃𝑣1+𝑎𝑢ID+ ̃𝑣1𝑢ID)
1 .

And so it sets (we slightly abuse notation and write (𝑔1𝑔3)𝑣1 for (𝑔 𝑎
1) ̃𝑣1(𝑔3) ̃𝑣1)

uska,2,ℓ = (𝑔 �̃�
1 ((𝑔1𝑔3)𝑏)− ̃𝑣1 (𝑔 𝑎

1)𝑢ID(𝑔1𝑔3) ̃𝑣1𝑢ID)
𝜙ℓ

⋅ ∏
𝑧∈[𝑚2]

(𝑔1𝑔3)𝜙ℓ,𝑧𝑟𝑚1+𝑧 ⋅ ∏
𝑖∈[𝑚1]+,𝑗∈[𝑛],

(𝑖,𝑗)≠(0,1)

(𝑔1𝑔3)𝜙ℓ,𝑖,𝑗𝑟𝑖𝑣𝑗.

Note that the key queries are answered with elements from the hash
oracle’s range and create properly distributed semi-functional keys of type II.

Challenge Ciphertext Whenever 𝒜 requests the ciphertext challenge by
sending (𝑚0, 𝑚1, {𝑥∗

a}a∈A∗), the challenger ℬ picks 𝑏 𝑅← {0, 1} and encrypts
message 𝑚𝑏 as a semi-functional challenge ciphertext.

90

5.6. Security of the Conversion Algorithm

Choose an uncorrupted authority a ′ ∈ A∗ ∩ 𝐼. For each authority a ∈
A∗ ∖ a ′, pick 𝜔′

a,1, 𝛿a
𝑅← ℤ𝑁, and set 𝜔′

a′,1 = − ∑a∈A∗∖a′ 𝜔′
a,1 and indirectly

set 𝛿a′ = 𝑎𝑏𝑐 − ∑a∈A∗∖a′ 𝛿a . Additionally, pick 𝜔′
a,23

𝑅← ℤ𝑁 for all a ∈ A∗.
Blind the message 𝑚𝑏 ∈ 𝔾𝑇 using 𝑇 to obtain ct0 = 𝑚𝑏 ⋅ 𝑇. Note that
if 𝑇 = 𝑒(𝑔1, 𝑔1)𝑎𝑏𝑐, the challenger simulates Game2,𝑞,2 using Δ = 𝑎𝑏𝑐 and
otherwise, if 𝑇 ∈𝑅 𝔾𝑇, the challenger simulates Game₃.

Now, for each authority a ∈ A∗ continue as follows (we frequently
drop the index a—when there is no ambiguity—to simplify notation). Run
EncCta (𝑁, 𝑥) to obtain 𝑤1, 𝑤2, and polynomials (𝑐1, … , 𝑐𝑤3

).
If a = a ′, pick ̃𝑠a′,0

𝑅← ℤ𝑁 and 𝑠a′,𝑘
𝑅← ℤ𝑁 for 𝑘 ∈ [𝑤1 + 𝑤2]. Set

cta′,1,0 = (𝑔 𝑐
1)−1(𝑔1𝑔2𝑔3) ̃𝑠a′,0 and cta′,1,𝑖 = (𝑔1𝑔2𝑔3)𝑠a′,𝑖 for 𝑖 ∈ [𝑤1]. Next,

ℬ constructs the values cta′,2,ℓ. The challenger ℬ needs to compute (among
others)

𝑔
𝜂ℓ𝜔+∑𝑧∈[𝑤2] 𝜂ℓ,𝑧 ̂𝑠a′,𝑧+∑𝑖∈[𝑤1]+,𝑗∈[𝑛] 𝜂ℓ,𝑖,𝑗𝑠𝑖𝑏𝑗

1 ,

where the occurance of 𝑠0𝑏1 in 𝑐ℓ can be computed by

𝑔 𝜂ℓ,0,1𝑠0𝑏1
1 = 𝑔 𝜂ℓ,0,1(−𝑐+ ̃𝑠a′,0)(𝑎+ ̃𝑣1)

1

= ((𝑔 𝑎𝑐
1)−1(𝑔 𝑐

1)− ̃𝑣1(𝑔 𝑎
1) ̃𝑠a′,0(𝑔1) ̃𝑠a′,0 ̃𝑣1)

𝜂ℓ,0,1
.

So, the challenger ℬ sets (we slightly abuse notation and write (𝑔1𝑔2𝑔3)𝑣1 for
(𝑔 𝑎

1) ̃𝑣1(𝑔2𝑔3) ̃𝑣1 and (𝑔1𝑔2𝑔3)𝑠a′,0 for (𝑔 𝑐
1)−1(𝑔1𝑔2𝑔3) ̃𝑠a′,0)

cta′,2,ℓ = ((𝑔1)𝜔′
a,1(𝑔2𝑔3)𝜔′

a,23)
𝜂ℓ ⋅ ∏

𝑧∈[𝑤2]
(𝑔1𝑔2𝑔3)𝜂ℓ,𝑧𝑠a,𝑤1+𝑧

⋅ ((𝑔 𝑎𝑐
1 𝑔𝑑

3)−1(𝑔 𝑐
1)− ̃𝑣1(𝑔 𝑎

1) ̃𝑠a′,0(𝑔1𝑔2𝑔3) ̃𝑠a′,0 ̃𝑣1)
𝜂ℓ,0,1

⋅ ∏
𝑖∈[𝑤1]+,𝑗∈[𝑛],

(𝑖,𝑗)≠(0,1)

(𝑔1𝑔2𝑔3)𝜂ℓ,𝑖,𝑗𝑠a′,𝑖𝑣𝑗.

Note that by using this,ℬ indirectly uses (𝜔′
a′,23−𝑑⋅𝜂ℓ,0,1/𝜂ℓ) in subgroup𝔾3

instead of 𝜔′
a′,23. However, since 𝜔′

a′,23 ∈𝑅 ℤ𝑁 and no constraint is imposed
on the sum ∑a∈A∗ 𝜔′

a′,23, the distribution of the ciphertext component is
identical to a semi-functional ciphertext.

Blind the value 𝑒(𝑔1, 𝑔1)𝛿a′ by setting

cta′,0 = 𝑒(𝑔1, 𝑔1)𝛿a′ ⋅ 𝑒(𝑔1, 𝑔1)𝛼a′𝑠a′,0

= 𝑒(𝑔1, 𝑔1)(𝑎𝑏𝑐−∑a∈A∗∖a′ 𝛿a)+(𝑎𝑏+�̃�a′)(−𝑐+ ̃𝑠a′,0)

91

Chapter 5. General Predicates: Multi-authority Predicate Encryption

= 𝑒(𝑔1, 𝑔1)(−∑a∈A∗∖a′ 𝛿a)+𝑎𝑏 ̃𝑠a′,0−𝑐�̃�a′+�̃�a′ ̃𝑠a′,0

= 𝑒(𝑔1, 𝑔1)(−∑a∈A∗∖a′ 𝛿a)+�̃�a′ ̃𝑠a′,0𝑒(𝑔 𝑎
1 , (𝑔1𝑔3)𝑏) ̃𝑠a′,0𝑒(𝑔 𝑐

1 , 𝑔1)−�̃�a′.

If a ≠ a ′, but a ∈ 𝐼, pick 𝑠a,𝑘 ∈ ℤ𝑁 for 𝑘 ∈ [𝑤1 + 𝑤2]+, and set
cta,1,𝑖 = (𝑔1𝑔2𝑔3)𝑠a,𝑖 for 𝑖 ∈ [𝑤1]+, and for ℓ ∈ [𝑤3], set (we slightly abuse
notation and write (𝑔1𝑔2𝑔3)𝑣1 for (𝑔 𝑎

1) ̃𝑣1(𝑔2𝑔3) ̃𝑣1)

cta,2,ℓ = ((𝑔1)𝜔′
a,1(𝑔2𝑔3)𝜔′

a,23)
𝜂ℓ

⋅ ∏
𝑧∈[𝑤2]

(𝑔1𝑔2𝑔3)𝜂ℓ,𝑧𝑠a,𝑤1+𝑧 ⋅ ∏
𝑖∈[𝑤1]+,𝑗∈[𝑛]

((𝑔1𝑔2𝑔3)𝑣𝑗)𝜂ℓ,𝑖,𝑗𝑠a,𝑖.

Blind the value 𝑒(𝑔1, 𝑔1)𝛿a by setting

cta,0 = 𝑒(𝑔1, 𝑔1)𝛿a ⋅ 𝑒(𝑔1, 𝑔1)𝛼a𝑠a,0

= 𝑒(𝑔1, 𝑔1)𝛿a ⋅ (𝑒(𝑔 𝑎
1 , (𝑔1𝑔3)𝑏)𝑒(𝑔1, 𝑔1)�̃�a)𝑠a,0 .

If a ∈ ̄𝐼, pick 𝑠a,𝑘 ∈ ℤ𝑁 for 𝑘 ∈ [𝑤1 + 𝑤2]+, and set cta,1,𝑖 = 𝑔 𝑠a,𝑖
1 for

𝑖 ∈ [𝑤1]+, and for ℓ ∈ [𝑤3], set

cta,2,ℓ = ((𝑔1)𝜔′
a,1(𝑔2𝑔3)𝜔′

a,23)
𝜂ℓ

⋅ ∏
𝑧∈[𝑤2]

𝑔 𝜂ℓ,𝑧𝑠a,𝑤1+𝑧
1 ⋅ ∏

𝑖∈[𝑤1]+,𝑗∈[𝑛]
(𝑔 𝑣𝑗

1)𝜂ℓ,𝑖,𝑗𝑠a,𝑖 .

Blind the value 𝑒(𝑔1, 𝑔1)𝛿a by setting cta,0 = 𝑒(𝑔1, 𝑔1)𝛿a ⋅ 𝑒(𝑔1, ska)𝑠a,0.
The complete challenge ciphertext is

ct = (ct0, {ct𝑠,0, ct𝑠,1,0, … , ct𝑠,1,𝑤1
, ct𝑠,2,1, … , ct𝑠,2,𝑤3

}𝑠∈𝑆).

This semi-functional ciphertext is properly distributed, with the equality
∏a∈A∗ 𝑒(𝑔1, 𝑔1)𝛿a = 𝑒(𝑔1, 𝑔1)𝑎𝑏𝑐. So, if 𝑇 = 𝑒(𝑔1, 𝑔1)𝑎𝑏𝑐, the adversary 𝒜 is
playing Game2,𝑞,2 and otherwise, if 𝑇 ∈𝑅 𝔾𝑇, 𝒜 is playing Game₃.

Finally, note that in Game₃, the challenger gives the adversary an en-
cryption of a random message. Hence, 𝒜 has no advantage in winning the
game.

5.7 Multi-authority Pair Encoding Examples

We give several examples of ma-pess for various predicate families.

92

5.7. Multi-authority Pair Encoding Examples

5.7.1 Multi-authority Identity-based Encoding

We can see the ma-abe construction by Lewko and Waters [lw11] as a special
case of our general ma-pe scheme. Their construction combines the same ibe
scheme multiple times with a “multi-authority layer” on top. Based on their
scheme, we extract the underlying ma-pes for an identity-based predicate.
However, note that if we apply our conversion algorithm on the resulting
encoding, we obtain a multi-authority ibe scheme, not an ma-abe scheme,
since our conversion uses additive secret sharing instead of Shamir secret
sharing. Furthermore, the resulting ma-pes can be seen as an encoding for
an ibe scheme which only allows for a single identity.

Example 1 (ma-pes Based On [lw11]). We give an ma-pes for multi-authority
identity-based encryption based on the ma-abe scheme by Lewko and Waters
[lw11]. The pair encoding for an authority a is the following:

𝐛 = (𝑏1); 𝐬 = (𝑠0); 𝐜 = (𝜔 + 𝑏1𝑠0); 𝐫 = (𝑟0); 𝐤 = (𝛼 + 𝑏1𝑟0).

For Pair we have

𝐸 = 1, ̂𝐸 = −1.

Correctness follows by simple substitutions,

𝑠0(𝐸)[𝛼 + 𝑏1𝑟0] + [𝑏1𝑠0 + 𝜔](̂𝐸)𝑟0

= 𝑠0(1)[𝛼 + 𝑏1𝑟0] + [𝑏1𝑠0 + 𝜔](−1)𝑟0

= 𝑠0𝛼 + 𝑠0𝑏1𝑟0 − (𝑠0𝑏1𝑟0 + 𝜔𝑟0)
= 𝛼𝑠0 − 𝜔𝑟0.

We can extend the construction to obtain a small universe construction
for 𝑡 identities, by setting

𝐛 = (𝑏1, … , 𝑏𝑡); 𝐬 = (𝑠0); 𝐜 = (𝜔+𝑏𝜌(𝑥)𝑠0); 𝐫 = (𝑟0); 𝐤 = (𝛼+𝑏𝜌(𝑦)𝑟0),

where 𝜌 is an injective function that maps an identity to an identity index
in [𝑡].

Remark 3 (One-Use Requirement). Similar to the one-use requirement for
attributes, as found in several abe schemes [los⁺10; lw11; Att14], the ma-pes
of Example 1 has this one-use requirement as well, i.e., a ciphertext ct from
a corresponding ma-pe scheme may only contain the identity 𝑥, encoded
by 𝑏𝜌(𝑥), once.

93

Chapter 5. General Predicates: Multi-authority Predicate Encryption

Theorem 10 (ma-pes Based On [lw11]). The (extended) ma-pes described in
Example 1 is statistically secure (see Definition 14).

Proof. If 𝑃𝜅(𝑥, 𝑦) = false, we have to show that the distributions

{𝑠0, 𝑏𝜌(𝑥)𝑠0, 𝑟0, 𝑏𝜌(𝑦)𝑟0} and {𝑠0, 𝜔 + 𝑏𝜌(𝑥)𝑠0, 𝑟0, 𝑏𝜌(𝑦)𝑟0}

are statically indistinguishable, where 𝑏𝜌(𝑥), 𝑏𝜌(𝑦), 𝜔, 𝑠0, 𝑟0
𝑅← ℤ𝑝 for any

prime 𝑝, log2 𝑝 = Θ(𝜆). Since 𝑃𝜅(𝑥, 𝑦) = false, we know that 𝑥 ≠ 𝑦 and
thus 𝜌(𝑥) ≠ 𝜌(𝑦).

We distinguish two cases:

• 𝑠0 ∈ ℤ∗
𝑝, i.e., 𝑠0 is a generator of the multiplicative group ℤ∗

𝑝.
Then, 𝑏𝜌(𝑥)𝑠0 is uniformly distributed in ℤ𝑝. On the other hand, 𝜔 +
𝑏𝜌(𝑥)𝑠0 is also uniformly distributed in ℤ𝑝. Hence, the distributions
are identical.

• 𝑠0 = 0, i.e., 𝑠0 is not a generator for the multiplicative group ℤ∗
𝑝.

Then, 𝑏𝜌(𝑥)𝑠0 = 0, while 𝜔 + 𝑏𝜌(𝑥)𝑠0 ∈𝑅 ℤ𝑝. However, this case only
occurs with a probability negligible in 𝜆.

Combining the two cases, we have proven that the two distributions are
statistically indistinguishable.

5.7.2 Multi-authority Attribute-based Encoding

We adapt the pes for cp-abe from the full version of Attrapadung [Att14,
Scheme 11] to an ma-pes. The pes is, in its turn, based on a small universe
cp-abe scheme by Lewko et al. [los⁺10].

Example 2 (ma-pes Based On [los⁺10; Att14]). The pes by Attrapadung
[Att14] can be turned into an ma-pes. Let 𝑡 denote the number of attributes
in the universe. For a linear secret sharing scheme (lsss) using (A𝑤3×𝑤2, 𝜋),
wherewe denote the 𝑖th rowofA by𝐚𝑖 and𝜋 is an injective function thatmaps
a row in A to an attribute index in [𝑡], the pair encoding for an authority a is
the following:

𝐛 = (𝑏′, 𝑏1, … , 𝑏𝑡);
𝐬 = (𝑠0, 𝑠1); 𝑐𝑖 = (𝐚𝑖(𝜔 + 𝑠0𝑏′, ̂𝑠2, … , ̂𝑠𝑤2

)T + 𝑠1𝑏𝜋(𝑖)) for all 𝑖 ∈ [𝑤3];
𝐫 = (𝑟0); 𝐤 = (𝛼 + 𝑟0𝑏′, {𝑟0𝑏𝑦}𝑦).

The matrices returned by the Pair algorithm are indirectly defined by the
combination of keys required to satisfy the access policy as described in the
ciphertext.

94

5.7. Multi-authority Pair Encoding Examples

Correctness follows by first computing

𝑐𝑖 ⋅ 𝑟0 − 𝑘𝑦 ⋅ 𝑠1

= [𝐚𝑖(𝜔 + 𝑠0𝑏′, ̂𝑠2, … , ̂𝑠𝑤2
)T + 𝑠1𝑏𝜋(𝑖)]𝑟0 − 𝑟0𝑏𝑦 ⋅ 𝑠1

= 𝐚𝑖(𝜔 + 𝑠0𝑏′, ̂𝑠2, … , ̂𝑠𝑤2
)T ⋅ 𝑟0 (if 𝜋(𝑖) = 𝑦)

for the attributes 𝜋(𝑖) the user has the key components 𝑦 = 𝜋(𝑖) for. Then, if
the user obtained enough shares 𝐚𝑖(𝜔+𝑠0𝑏′, ̂𝑠2, … , ̂𝑠𝑤2

)T ⋅𝑟0, he can combine
the shares to recover the secret [𝜔+𝑠0𝑏′]⋅𝑟0 and then use this to symbolically
obtain

𝑘1 ⋅ 𝑠0 − [𝜔 + 𝑠0𝑏′] ⋅ 𝑟0 = [𝛼 + 𝑟0𝑏′] ⋅ 𝑠0 − [𝜔 + 𝑠0𝑏′] ⋅ 𝑟0

= 𝛼𝑠0 − 𝜔𝑟0.

Theorem 11 (ma-pes Based On [Att14]). The ma-pes described in Example 2 is
statistically secure (see Definition 14).

Proof. The proof is very similar to the proof presented in the full version
of [Att14].

When 𝑃(𝑥, 𝑦) = false, we have that (A, 𝜋) does not accept 𝑦. We
need to prove that 𝜔 is hidden. We may assume 𝑠1 ≠ 0 since the prob-
ability of 𝑠1 = 0 is negligible in 𝜆. For 𝑗 = 1, … , 𝑤3, we consider two
cases. If 𝜋(𝑗) ∉ 𝑦, then 𝑏𝜋(𝑗) does not appear anywhere except for in 𝑐𝑖 and
hence the information on 𝜔 + 𝑠0𝑏′ will not be leaked from 𝑐𝑖. Now con-
sider 𝜋(𝑗) ∈ 𝑦. In this case, both 𝑠1 and 𝑏𝜋(𝑗) are available (since 𝑟0 and
𝑟0𝑏𝜋(𝑗) are), hence 𝐚𝑖(𝜔 + 𝑠0𝑏′, ̂𝑠2, … , ̂𝑠𝑤2

)T is known. Now from the lemma
of lsss (similar to [Att14, Proposition 40]), there exists a vector 𝐮 ∈ ℤ𝑤3

𝑁
with 𝑢1 ≠ 0, such that 𝐮 is orthogonal to all 𝐚𝑗, where 𝜋(𝑗) ∈ 𝑦. Hence,
𝐚𝑗(𝜔 + 𝑠0𝑏′, ̂𝑠2, … , ̂𝑠𝑤2

)T = 𝐚𝑗((𝜔 + 𝑠0𝑏′, ̂𝑠2, … , ̂𝑠𝑤2
)T + 𝑧𝐮T) for any un-

known random 𝑧 ∈ ℤ𝑁. Therefore, 𝐚𝑗(𝜔 + 𝑠0𝑏′, ̂𝑠2, … , ̂𝑠𝑤2
)T does not leak

information on 𝜔 + 𝑠0𝑏′ as 𝑢1 ≠ 0. In either case 𝜔 + 𝑠0𝑏′ is hidden in the
encoding. Since 𝜔 only occurs in this expression 𝜔 + 𝑠0𝑏′, no information
on 𝜔 is revealed.

5.7.3 Multi-authority Inner-product Encoding

To create a multi-authority admissible pair encoding scheme (ma-pes) for an
inner-product predicate, we extend the “short secret key encoding” presented
by Wee [Wee14, § 5.1]

Example 3 (ma-pes Based On [bb04b; Wee14]). Based on the predicate en-
coding of Wee [Wee14] for an ippe scheme, which, in its turn, is based on

95

Chapter 5. General Predicates: Multi-authority Predicate Encryption

the scheme of Boneh and Boyen [bb04b], we create an ma-pes for the inner-
product predicate. Such a predicate evaluates to true if and only if the inner
product of the, with the ciphertext associated, vector 𝐱 and the, with the
key associated, vector 𝐲 equals 0, i.e., if ⟨𝐱, 𝐲⟩ = 0. Let 𝑡 be the length of the
vectors 𝐱 and 𝐲. The pair encoding for an authority a is the following:

𝐛 = (𝑏′, 𝑏″, 𝐛+), where 𝐛+ = (𝑏1, … , 𝑏𝑡);
𝐬 = (𝑠0); 𝐜 = (−𝜔 + 𝑠0𝑏′, 𝑠0(𝑏″𝐱 + 𝐛+)) ;
𝐫 = (𝑟0); 𝐤 = (𝛼 − 𝑟0(𝑏′ + ⟨𝐛+, 𝐲⟩)) .

Similar to Example 2, Pair(𝑁, 𝑥, 𝑦) relies on the value 𝑦, which is in this case is
the vector 𝐲. Algorithm Pair outputs matrices to compute 𝑠0 ⋅𝑘1 +⟨𝐜, (1, 𝐲)⟩⋅
𝑟0.

Correctness follows by simple substitutions and simplifying the expres-
sion,

𝑠0 ⋅ 𝑘1 + ⟨𝐜, (1, 𝐲)⟩ ⋅ 𝑟0

= 𝑠0 [𝛼 − 𝑟0(𝑏′ + ⟨𝐛+, 𝐲⟩)] + ⟨(−𝜔 + 𝑠0𝑏′, 𝑠0(𝑏″𝐱 + 𝐛+), (1, 𝐲)⟩ 𝑟0

= 𝑠0 [𝛼 − 𝑟0(𝑏′ + ⟨𝐛+, 𝐲⟩)] + [(−𝜔 + 𝑠0𝑏′) + 𝑠0⟨𝑏″𝐱 + 𝐛+, 𝐲⟩] 𝑟0

= 𝑠0𝛼 − 𝑠0𝑟0⟨𝐛+, 𝐲⟩ − 𝜔𝑟0 + 𝑠0 [𝑏″⟨𝐱, 𝐲⟩ + ⟨𝐛+, 𝐲⟩] 𝑟0

= 𝛼𝑠0 − 𝜔𝑟0 (if ⟨𝐱, 𝐲⟩ = 0).

Theorem 12 (ma-pes Based On [bb04b; Wee14]). The ma-pes described in
Example 3 is statistically secure (see Definition 14).

Proof. When 𝑃(𝑥, 𝑦) = false, we have that ⟨𝐱, 𝐲⟩ ≠ 0. We need to prove
that 𝜔 is hidden. We may assume 𝑠0 ≠ 0 since the probability of 𝑠0 = 0
is negligible in 𝜆. Since 𝜔 only appears in 𝑐0, we need to show that 𝑏′𝑠0 is
uniformly distributed in ℤ𝑝 and therefore no information on 𝜔 is revealed.
The value 𝑏′ only appears in the adversary’s view elsewhere as 𝑟0(𝑏′+⟨𝐛+, 𝐲⟩)
in 𝑘1. Thus, we now need to show that 𝑟0⟨𝐛+, 𝐲⟩ is statistically hidden. The
value 𝐛+ only appears as 𝑠0(𝑏″𝐱 + 𝐛+) in the adversary’s view. However,
no information on the value of 𝑏″ is revealed and so, if ⟨𝐱, 𝐲⟩ ≠ 0, the
value ⟨𝐛+, 𝐲⟩ is hidden. We may conclude that 𝑏′ is hidden and so is 𝜔.

5.8 Conclusion

We show that the concept of a multi-authority attribute-based encryption
scheme can be generalized to a multi-authority predicate encryption (ma-
pe) scheme for a variety of predicate families. Our generic approach allows

96

5.8. Conclusion

us to combine the best features of several predicates into a single ma-pe
scheme specific to an application’s needs. We achieve our result by defining
a multi-authority admissible pair encoding scheme (ma-pes) and proposing
a conversion technique from such an encoding to an ma-pe scheme. The
obtained ma-pe schemes are decentralized, meaning that new authorities can
be created without requiring any form of interaction, while no party needs to
have access to a master secret. If started from statistically secure ma-pess,
the resulting ma-pe schemes are proven to be fully secure—allowing for the
static corruption of authorities—in the random oracle model.

In Chapter 6, we discuss an idea for instantiating the construction in
a prime-order group setting. Another direction for future work is the for-
malization of plaintext-privacy and predicate-privacy in ma-pes. Finally, the
relation between pess and ma-pess is also worthwhile to study. Since the
encodings are so similar, it is our impression that it is possible to devise a
conversion algorithm that turns a pes into an ma-pes.

97

Chapter 5. General Predicates: Multi-authority Predicate Encryption

98

.

6 Directions for Extending the
Work

. .

In the chapters above, we construct several multi-client func-
tional encryption schemes for various functionalities. In this
chapter, we give detailed directions to further refine two of our
constructions. First, we describe an idea for a multi-client set
intersection scheme that scales linearly in the number of clients
and is still secure if part of the clients are corrupted. An additional
advantage of the proposed design is that the same idea could be
applied to set intersection with data transfer and similar variants.
As a second idea, we aim to construct multi-authority predicate
encryption in prime-order groups. Since prime-order groups are
generally faster than composite-order groups for a comparable
security level, a prime-order construction would improve the
efficiency of the schemes.

The content of this chapter is unpublished, but might provide
valuable insights for constructing improved multi-client func-
tional encryption schemes.

6.1 Towards More Efficient Corruption-Resistant
Multi-client Set Intersection

In Chapter 3, we present multi-client functional encryption (mc-fe) con-
structions for various set operations. Our two-client constructions are fast
and cannot be substantially improved in terms of efficiency. In the case of
determining the cardinality of two sets, there is even no evaluation overhead
when compared with the same operation on plaintext data. Our proposals
for the multi-client constructions are more involved, but can still be eval-
uated in the order of seconds for smaller set sizes. In Section 3.7.3, we are
able to construct an mc-fe scheme for determining the set intersection that
is secure against corruptions, but it scales exponentially in the number of
clients involved in the scheme. The same exponential complexity arose when
devising an mc-fe scheme for computing the cardinality of the set intersec-

99

Chapter 6. Directions for Extending the Work

tion (see Section 3.7.1). However, for that functionality we have come up
with an improved scheme that scales only linearly in the number of clients
(Section 3.7.2). This latter scheme is not corruption resistant, but does seem
to have the potential to make it corruption resistant. In this section, we
describe an idea for creating more efficient and corruption resistant mc-
fe schemes for set intersection and variants based on the intuition of the
efficient multi-client cardinality scheme.

6.1.1 Intuition for mc-fe for Set Intersection Cardinality

First, let us recall the efficient construction for determining the cardinality
of the intersection of three or more set using Bloom filters construction (see
Section 3.7.2). We can describe the idea on an intuitive level as follows:

1. Each client encrypts both

• the Bloom filter representation of their set, BF(S𝑖); and
• the Bloom filter representation for each element in their set,

{BF(𝑥𝑗) ∣ 𝑥𝑗 ∈ S𝑖 } .

2. The evaluator aggregates the encrypted Bloom filter representations
from each client, BF(S𝑖) for 1 ≤ 𝑖 ≤ 𝑛, resulting in an encrypted Bloom
filter representation of the set intersection of the sets, ⋂𝑛

𝑖=1 S𝑖.

3. The evaluator picks a client 𝑖′ and uses their encrypted Bloom filter
representations of each element in their set, {BF(𝑥𝑗) ∣ 𝑥𝑗 ∈ S𝑖′ }, to
test for membership in the encrypted Bloom filter representation of
the intersection.

Observe that in Step 3, the evaluator basically determines, for each set ele-
ment 𝑥𝑗 ∈ S𝑖′, whether 𝑥𝑗 ∈ (⋂𝑛

𝑖=1 S𝑖). By tallying how often an element is
in the set intersection, we determine the cardinality of the set intersection.

There are two relevant limitations of the above described construc-
tion. Firstly, the construction only allows for the evaluation of the set
membership predicate (i.e., a function that merely gives a true/false out-
put). Secondly, the construction is not secure against corruptions as a cor-
rupted client has two secret shares: one to encrypt BF(S𝑖) and another to
encrypt {BF(𝑥𝑗) ∣ 𝑥𝑗 ∈ S𝑖 }. Each corrupted client can use their second share
to encrypt a “full” Bloom filter for an uncorrupted client, meaning that aggre-
gation works on a strict subset of the uncorrupted clients, leaking bits of the
Bloom filter representation for the intersection of this subset of uncorrupted
clients.

100

6.1. Towards More Efficient Corruption-Resistant mc-si

Related Work While private membership testing for Bloom filters (i.e.,
testing if an element 𝑥𝑗 is represented in a Bloom filter using a private key)
is theoretically solved [Ker11], no practically efficient solution is known. In
the solution by Kerschbaum [Ker11], the bits in the bit string of the Bloom
filter need to be encrypted 𝑐 times to achieve an error rate of 2−𝑐. Moreover,
the bits are encrypted using Goldwasser–Micali encryption [gm84], requiring
finite fields of a large order to be secure. Even worse, to test membership, a
zero-knowledge proof is required for each bit of the bit string, making this
construction only of theoretical interest.

6.1.2 Extending the Idea to Determine the Set Intersection

We claim that under the assumption that a public key inner-product predicate
encryption (ippe) scheme with a key homomorphism exists, we can construct
an efficient mc-fe scheme for determining the set intersection. While the
overall idea is straightforward, the concrete constructionmight be non-trivial.
Most likely, the major difficultly lies in the challenge to construct an ippe
scheme with a key homomorphism.

Inner-product Predicate for Membership Testing It is well-known that
ippe can be used for set membership testing [ksw08] (cf. polynomial rep-
resentations of sets [ks05]), although doing so using Bloom filters might
be novel (albeit a trivial variation). Let vector 𝐱 ∈ ℤ𝑚+1

𝑝 encode the bit
string of a (𝑘, 𝑚)-Bloom filter for a single set element 𝑒 with 𝑥𝑚+1 set to the
Hamming weight of the bit string. Now, let vector 𝐲 ∈ ℤ𝑚+1

𝑝 encode the
bit string of a (𝑘, 𝑚)-Bloom filter for some set S , where we use a random
value 𝑟 ∈ ℤ𝑝, instead of 0 if the bit string bit is 0. We set 𝑦𝑚+1 = −1. The
inner product of the two vectors ⟨𝐱, 𝐲⟩ = ∑𝑚+1

𝑖=1 𝑥𝑖𝑦𝑖 equals zero if and only
if 𝑒 ∈ S according to the Bloom filter.

It might be easier to see how we can use ippe for membership testing
using a concrete example.

Example 4. Consider the set element 𝑒 with (3, 8)-Bloom filter representa-
tion 00100001 (note that one hash collision has taken place). Let 01100101
be the (3, 8)-Bloom filter representation for some set S .

Following the description above, we encode our set membership predi-
cate as

𝐱 = (0 0 1 0 0 0 0 1 2);
𝐲 = (𝑟1 𝑟2 1 𝑟4 𝑟5 𝑟6 𝑟7 1 −1),

101

Chapter 6. Directions for Extending the Work

where the values 𝑟𝑖 denote random values (e.g., 𝑟1
𝑅← ℤ𝑝). Observe that if

⟨𝐱, 𝐲⟩ = 0, i.e., if

0 ⋅ 𝑟1 + 0 ⋅ 𝑟2 + 1 ⋅ 1 + 0 ⋅ 𝑟4 + 0 ⋅ 𝑟5 + 0 ⋅ 𝑟6 + 0 ⋅ 𝑟7 + 1 ⋅ 1 + 2 ⋅ −1 = 0,

weknow that 𝑒 ∈ S as this is similar tomembership testing using unencrypted
Bloom filters.

Determining the Set Intersection Under Encryption To determine the
set intersection, we want to secret share the ippe decryption key using a
homomorphism in the decryption key for 𝐲. Using such a property, we could
aggregate the clients’ decryption keys, e.g., ∑𝑛

𝑖=1 𝐲𝑖 in the exponent, thereby
computing the set intersection in the encrypted domain. For example, if
each client 𝑖 holds a secret share of 1 for each bit string position 1 ≤ ℓ ≤ 𝑚,
i.e., ∑𝑛

𝑖=1 𝜎𝑖,ℓ = 1 for each ℓ, we could aggregate vectors 𝐲𝑖 into the final
vector 𝐲 used in the decryption key by setting

𝑦𝑖,ℓ = {
𝑟ℓ

𝑅← ℤ𝑝 if bs[ℓ] = 0
𝜎𝑖,ℓ if bs[ℓ] = 1.

Using ippe for Determining the Set Intersection The crux of this solu-
tion is that we can use the ciphertext payload of the ippe scheme, 𝑚, to
encrypt the actual set element, i.e., a client encrypts all the set elements using
the ippe scheme where we associate the ciphertext with the vector 𝐱 that
is based on the Bloom filter representations of that very same set element.
Thus, if the membership test succeeds (i.e., the predicate returns true), the
evaluator can also decrypt the ciphertext to learn 𝑚, the set element itself!

For security, we require that the vector 𝐱 is hidden in the ciphertext,
i.e., we require plaintext privacy. Surprisingly enough, we can suffice with a
public key ippe scheme: Realize that we only require to hide the values for 𝐱
(already covered by plaintext privacy), but we may leak the entire Bloom
filter 𝐲—as long as 𝐲 doesn’t leak any information on the values 𝐲𝑖. To see
this, recognize that the set intersection is what we want to determine and
that is all what is leaked from the Bloom filter 𝐲. We can even allow anyone
that has access to this Bloom filter to run an exhaustive search on the filter
to try to learn the intersection. It might be insightful to understand that we
only provide the evaluator with the individually encrypted set elements to
allow for efficiently checking only a relatively small set of potential members.
Furthermore, observe that the proposed construction has the additional
benefit of lowering the false positive rate of membership testing by also
considering the Hamming weight of the bit string.

102

6.2. Towards Multi-authority Predicate Encryption in Prime-Order Groups

6.1.3 Further Extensions to Other Set Operations

Upon completion of the above described construction for determining the
set intersection, it is trivial to extend to for example set intersection with
data transfer/projection: Just encrypt the associated data instead of the set
element. A threshold construction might also be possible to realize this way:
Encrypt secret shares instead and use again a layer of secret sharing like in
the two client case (see Section 3.6.4) to recover a secret key only if at least 𝑡
elements were in the set.

6.2 Towards Multi-authority Predicate Encryption in
Prime-Order Groups

The proposed construction in Chapter 5 is the first generic construction
for multi-authority predicate encryption (ma-pe). The result is achieved by
using composite-order bilinear groups. A drawback of these composite-order
groups, is that they are much slower than prime-order groups for the same
security level. So, if we want to apply the construction in practice, we rather
use groups of prime order than of a composite one. In this section, we explain
one of our attempts in constructing a generic ma-pe scheme using prime-
order bilinear groups. We believe that with more research, this approach will
lead to such a scheme. However, the current approach seems to lead to a
construction that is only provable without authority corruptions.

6.2.1 Bird’s-Eye View of the Approach

We try to minimize the changes needed to modify our in Chapter 5 proposed
composite-order ma-pe construction to a prime-order one. To do so, we at-
tempt to replace the composite-order groups of three primes by prime-order
groups that can emulate them. In that way, we can keep on using the proof
structure of the multi-system encryption technique (i.e., the proof technique
where we use semi-functional ciphertext and keys) and aim to prove the con-
struction fully secure instead of the weaker selectively secure. The property that
makes it possible to prove the construction fully secure with composite-order
bilinear groups, is that we can encode multiple independent “system groups”
in a single group element, where the pairing operation applies to these system
groups independently. That is, 𝑒(𝑔(12), ℎ(12)) = 𝑒(𝑔(1), ℎ(1)) 𝑒(𝑔(2), ℎ(2)), where
we denote with 𝑔(1), 𝑔(2), and 𝑔(12) an element 𝑔 ∈ 𝔾 in system group 1, 2, or in
both system group 1 and 2, respectively. To prove full security, this property
should additionally fulfill two other properties. First, elements should not
reveal to which system groups they belong. Second, even if the randomness

103

Chapter 6. Directions for Extending the Work

in one system group is revealed, the randomness of any other system group
should remain information-theoretically hidden.

As explained above, a major drawback of composite-order groups, is
that they are very inefficient. Prime-order group do not suffer from this
efficiency drawback, however, they do not have the property of encoding
multiple system groups into a single group element. The works by Lewko
[Lew12] and Chen and Wee [cw14] overcome this limitation of prime-order
groups by imposing extra structure onto these groups achieving the same
desired properties as composite order group have.

We introduce 𝑘-system groups (𝑘sg), a generalization of dual system
groups [cw14]. 𝑘sg can be seen as an abstraction of composite-order bilinear
groups. With our instantiation of triple system groups (tsg) (or, 3-system
groups) in a prime-order group setting, we aim to construct prime-order
multi-authority predicate encryption schemes.

6.2.2 Preliminaries

We denote the identity matrix of size 𝑛×𝑛 by I𝑛. To sample a randommatrix
from the general linear group (i.e., invertible matrices) of size 𝑛 × 𝑛 over the
finite field ℤ𝑝, we write M 𝑅← GL𝑛(ℤ𝑝). Similarly, to sample a 𝑛×𝑛 diagonal
matrix over ℤ∗

𝑝, we write U 𝑅← Diag𝑛(ℤ∗
𝑝)

A bilinear map over matrices is defined as

𝑒(𝑔A, ℎB) = 𝑒(𝑔, ℎ)ATB

6.2.3 Complexity Assumptions

We rely on a generalized 𝑑-linear game (Definition 15) similar to the general-
ized 𝑑-linear assumption defined in [ac15, § B.2]. Likewise to their result, we
reduce the 𝑑-linear assumption (Assumption 2) to this generalized 𝑑-linear
game. The generalized 𝑑-linear assumption without relying on pairing groups
has been used before [Fre10; cw14].

Reduction from the 𝑑-Linear Assumption Weprove a lemma that wewill
use inmany of the other proofs, showing that an adversary capable of breaking
the Generalized 𝑑-Linear Game, can also break the 𝑑-Linear Assumption.

Definition 15 (Generalized 𝑑-Linear Game (cf. [ac15, § B.2])). Any probabilis-
tic polynomial time (p.p.t.) adversary 𝒜 has at most a negligible advantage
in winning the following left-or-right security game.

104

6.2. Towards Multi-authority Predicate Encryption in Prime-Order Groups

Setup Let gp = (𝑝, 𝔾1, 𝔾2, 𝔾𝑇, 𝑒, 𝑔1, 𝑔2)) ← 𝒢3(1𝜆) be the generated
group parameters and pick values 𝐚 𝑅← (ℤ∗

𝑝)𝑑 and 𝑎𝑑+1
𝑅← ℤ∗

𝑝. The group
parameters gp and the values (𝑔 𝐚

1 , 𝑔 𝑎𝑑+1
1 , 𝑔 𝐚

2) are shared with the adversary.
The challenger picks a bit 𝑏 𝑅← {0, 1}.

Challenge Query The adversary may query the challenger for a polynomial
number of challenges. Upon receiving a challenge request, the challenger
picks values 𝐭 𝑅← (ℤ𝑝)𝑑 and 𝑡𝑑+1

𝑅← ℤ∗
𝑝. Depending on the bit 𝑏, the chal-

lenger set

𝑇0 = 𝑔𝑎𝑑+1 ∑𝑑
𝑖=1 𝑡𝑖

1 or 𝑇1 = 𝑔𝑎𝑑+1 ∑𝑑
𝑖=1 𝑡𝑖+𝑡𝑑+1

1

and returns (𝑔 𝐚∘𝐭
1 , 𝑇𝑏) to the adversary.

Guess The adversary outputs its guess 𝑏′ for bit 𝑏. We define the advantage
of the adversary in winning the game as Pr[𝑏′ = 𝑏] − 1 ∕ 2.

Lemma 7 (𝑑-Linear Assumption ≤ Generalized 𝑑-Linear Game (cf. [ac15,
Lemma 8])). If the 𝑑-Linear Assumption (Assumption 2) holds for a group gen-
erator 𝒢3(1𝜆), then the Generalized 𝑑-Linear Game (Definition 15) also holds
for 𝒢3(1𝜆).

Proof. We construct a challenger capable of breaking the 𝑑-Linear Assump-
tion using a p.p.t. adversary 𝒜 that has a non-negligible advantage in winning
the Generalized 𝑑-Linear Game.

Setup Algorithm ℬ obtains

(gp, 𝑔 𝐚
1 , 𝑔 𝑎𝑑+1

1 , 𝑔 𝐚
2 , 𝑔 𝐚∘𝐭

1 , 𝑇 = 𝑔 𝑎𝑑+1 ∑𝑑
𝑖=1 𝑡𝑖+𝑡𝑑+1

1)

as input, where 𝑡𝑑+1 is either 0 or uniformly chosen from ℤ∗
𝑝. It shares the

group parameters gp and the values (𝑔 𝐚
1 , 𝑔 𝑎𝑑+1

1 , 𝑔 𝐚
2) with the adversary.

Challenge Query The challenger ℬ picks values 𝐭′ 𝑅← (ℤ𝑝)𝑑 and 𝑡′
𝑑+1

𝑅← ℤ∗
𝑝.

It indirectly sets ̃𝐭 = (𝐭+𝐭′)𝑡′
𝑑+1 and ̃𝑡𝑑+1 = 𝑡𝑑+1𝑡′

𝑑+1 by returning the values

𝑔 𝐚∘�̃�
1 = (𝑔 𝐚∘𝐭

1 ∘ 𝑔 𝐚∘𝐭′
1)𝑡′

𝑑+1 and ̃𝑇 = (𝑇 ⋅ 𝑔 𝑎𝑑+1 ∑𝑑
𝑖=1 𝑡′

𝑖
1)

𝑡′
𝑑+1

to the adversary 𝒜. Note that this returned challenge is correctly distributed.

Guess Upon receiving the guess 𝑏′ for 𝑏 from adversary 𝒜, the challenger
guesses that 𝑡𝑑+1 = 0 if and only if 𝑏′ = 0. Observe that the challenger
now obtains the same non-negligible advantage in breaking the 𝑑-Linear
Assumption as the adversary in winning the Generalized 𝑑-Linear Game.

105

Chapter 6. Directions for Extending the Work

Remark 4. We require the generalized 𝑑-linear game, and thus also the
𝑑-linear assumption, to hold in both groups.

We also require the 𝑑-Bilinear Diffie–Hellman assumption, which is
proven to hold under the 𝑑-linear assumption [bsw13].

Assumption 8 (𝑑-Bilinear Diffie–Hellman [bsw13]). Let the bilinear map
parameters gp = (𝑝, 𝔾1, 𝔾2, 𝔾𝑇, 𝑒, 𝑔) be generated by 𝒢3(1𝜆), and 𝑔1

𝑅←
𝔾1, 𝑔2

𝑅← 𝔾2, and 𝑥, 𝑦, 𝑎1, … , 𝑎𝑑, 𝑧1, … , 𝑧𝑑
𝑅← ℤ𝑝. Given 𝑔1, 𝑔2, 𝑔 𝑥

2 , 𝑔 𝑦
1 ,

𝑔 𝑎1
1 , … , 𝑔 𝑎𝑑

1 , 𝑔 𝑎1
2 , … , 𝑔 𝑎𝑑

2 , 𝑔 𝑎1𝑧1
1 , … , 𝑔 𝑎𝑑𝑧𝑑

1 , 𝑔 𝑎1𝑧1
2 , … , 𝑔 𝑎𝑑𝑧𝑑

2 , and𝑇, it is hard to
distinguish 𝑇 = 𝑒(𝑔1, 𝑔2)𝑥𝑦(𝑧1+⋯+𝑧𝑑) from 𝑇 ∈𝑅 𝔾𝑇. That is, the advantage
of any p.p.t. adversary 𝒜 in distinguishing,

∣Pr[𝒜((gp, 𝑔1, 𝑔2, 𝑔 𝑥
2 , 𝑔 𝑦

1 , 𝑔 𝐚
1 , 𝑔 𝐚

2 , 𝑔 𝐚∘𝐳
1 , 𝑔 𝐚∘𝐳

2), 𝑒(𝑔1, 𝑔2)𝑥𝑦(𝑧1+⋯+𝑧𝑑)) = 1]

− Pr[𝒜((gp, 𝑔1, 𝑔2, 𝑔 𝑥
2 , 𝑔 𝑦

1 , 𝑔 𝐚
1 , 𝑔 𝐚

2 , 𝑔 𝐚∘𝐳
1 , 𝑔 𝐚∘𝐳

2), 𝑇 𝑅← 𝔾𝑇) = 1]∣,

where we write 𝐚 for the column vector (𝑎1, … , 𝑎𝑑)T and 𝐳 for (𝑧1, … , 𝑧𝑑)T,
is negligible in the security parameter 𝜆.

6.2.4 𝑘-System Groups

As explained above, we choose to introduce an abstraction layer that im-
poses additional structure on the bilinear groups used. The most important
functional requirement of this additional structure is to obtain system groups
within a bilinear group. A key property of these system groups—termed
orthogonality—is that if we pair an element from one of these system groups
with an element of another system groups, we obtain the identity element in
the target group. This is similar to the incredibly useful property found in
composite-order bilinear groups.

We base our 𝑘-system groups on the dual system groups introduced by
Chen and Wee [cw14]. A clear difference between the two notions is that
our notion achieves 𝑘 of these system groups, while before only systems
for achieving two system groups were described. However, our extension
is more than just an increase in the number of available system groups. For
example, we introduce the possibility to have multiple sampling parameter
within the same group parameters and define a new mapping function from
an arbitrary group element to a specific system group. Additionally, we define
stronger security properties on the 𝑘sg, making them a more powerful tool.

To keep track ofwhich system group or system groups an element belongs,
we write the system group numbers between parentheses in superscript to
the element. For example, 𝑔(1) is an element belonging to the first system

106

6.2. Towards Multi-authority Predicate Encryption in Prime-Order Groups

group, while ℎ(12) = ℎ(1)ℎ(2) belongs to both system group 1 and 2. An example
of the orthogonality requirement as stated above, can now simply be denoted
as 𝑒(𝑔(1), ℎ(12)) = 𝑒(𝑔(1), ℎ(1)) ⋅ 𝑒(𝑔(1), ℎ(2)) = 𝑒(𝑔(1), ℎ(1)).

Definition 16 (𝑘-SystemGroups). An instantiation of 𝑘-system groups (𝑘sg)
can be described by the following six p.p.t. algorithms.

SampGroup(1𝜆, 𝑘) → (gp,gs). On input of the security parameter 𝜆 and the
number of system groups 𝑘, the algorithm outputs the public and secret group
parameters (gp,gs). The public group parameters gp contain at least the
tuple (𝑁 = ord(𝔾𝑇), 𝔾, ℍ, 𝔾𝑇, 𝔾𝑟) and the bilinear map 𝑒: 𝔾 × ℍ → 𝔾𝑇.

SampP(gp, 1𝑛) → (𝜇, sp𝔾,1, … , sp𝔾,𝑘, spℍ,1, … , spℍ,𝑘, tr). On input of the
public group parameters, the algorithm outputs a linear map 𝜇 on the do-
main ℍ, 𝑘 sampling parameters for both 𝔾 and ℍ, sp𝔾,𝑖 and spℍ,𝑖, respec-
tively (for 𝑖 ∈ [𝑘]), and a trapdoor tr.

The sampling parameters sp𝔾,𝑖 and spℍ,𝑖 can be used to sample elements
using SampG𝑖 and SampH𝑖, respectively. The sampling parameters tr can be
used in MapH₁.

SampGT(𝜇(ℎ); 𝑠). The algorithm takes an element 𝜇(ℎ), ℎ ∈ ℍ, from the
image of 𝜇 and randomness 𝑠 ∈ 𝔾𝑟 as input. It outputs an element in the
target group 𝔾𝑇.

SampG𝑖(sp𝔾,𝑖; 𝑠). Outputs 𝑛 + 2 elements of 𝔾, 𝐠(𝐢) ∈ 𝔾𝑛+2, sampled using
randomness 𝑠 ∈ 𝔾𝑟 and using sp𝔾,𝑖. We often omit the value 𝑠, in such a
case we use 𝑠 𝑅← 𝔾𝑟.

SampH𝑖(spℍ,𝑖; 𝑟). Outputs 𝑛+2 elements of ℍ, 𝐡(𝐢) ∈ ℍ𝑛+2, sampled using
randomness 𝑟 ∈ 𝔾𝑟 and using spℍ,𝑖. We often omit the value 𝑟, in such a
case we use 𝑟 𝑅← 𝔾𝑟.

MapH₁(tr, ℎ). Maps ℎ ∈ ℍ to 𝑛 + 2 elements in ℍ, 𝐡(𝟏) ∈ ℍ𝑛+2, using tr.

6.2.5 Properties of 𝑘-System Groups

To be useful, instantiations of 𝑘sg have to satisfy the properties of correctness,
orthogonality, non-degeneracy, and indistinguishability.

To meet correctness, the following two properties need to hold.

Projective For all ℎ ∈ ℍ and values 𝑠 ∈ 𝔾𝑟, (𝑔(1)
0 , …) ← SampG₁(sp𝔾,1; 𝑠),

we have SampGT(𝜇(ℎ); 𝑠) = 𝑒(𝑔(1)
0 , ℎ).

Associative For all sampled elements (𝑔(1)
0 , … , 𝑔(1)

𝑛+1) ← SampG₁(sp𝔾,1) and
(ℎ(1)

0 , … , ℎ(1)
𝑛+1) ← SampH₁(spℍ,1), we have that for all 𝑖 ∈ [𝑛 + 1],

𝑒(𝑔(1)
0 , ℎ(1)

𝑖) = 𝑒(𝑔(1)
𝑖 , ℎ(1)

0).

107

Chapter 6. Directions for Extending the Work

For our construction of ma-pe, we also require a third, homomorphic
property to meet correctness.

Homomorphic The algorithm SampG𝑖 is homomorphic in the random-
ness 𝑠 used, i.e.,

SampG𝑖(sp𝔾,𝑖, 𝑠1) ⋅ SampG𝑖(sp𝔾,𝑖, 𝑠2) = SampG𝑖(sp𝔾,𝑖, 𝑠1 + 𝑠2).

For security, several other properties need to hold.

Orthogonality 𝜇(ℎ(𝑖)) = 𝟙 for all 2 ≤ 𝑖 ≤ 𝑘.

Non-degeneracy For all 2 ≤ 𝑖 ≤ 𝑘, sample (𝑔(𝑖)
0 , …) ← SampG𝑖(sp𝔾,𝑖) and

(ℎ(𝑖)
0 , …) ← SampH𝑖(spℍ,𝑖); we have that 𝑒(𝑔(𝑖)

0 , ℎ(𝑖)
0)𝑎, where 𝑎 𝑅← ℤ𝑁,

is identically distributed to the uniform distribution over 𝔾𝑇.

Indistinguishability Several forms of indistinguishability need to hold. We
require ({1}, {1, … , 𝑘})-system group indistinguishability to hold in𝔾
(see Definition 17). Moreover, for indistinguishability in ℍ, we require
Definition 18. Additionally, two distributions as defined in parameter-
hiding (Definition 19) should be identically distributed.

Definition 17 ((L,R)-System Group Indistinguishability in 𝔾). An instanti-
ation of 𝑘-system groups is (L,R)-system group indistinguishable in 𝔾 for the
sets L,R ⊆ [𝑘], if every p.p.t. adversary 𝒜 has at most a negligible advantage
in winning the following game.

Setup The challenger ℬ chooses a random bit 𝑏. Next, the challenger runs
the SampGroup algorithm and gives gp to the adversary.

Query The adversary may query the challenger for sampling parameters or
for samples in 𝔾.

• Parameters The adversary may query for the 𝑞th sampling parameters
and send the parameters size𝑛 to the challenger. The challengerℬ runs
SampP(gp, 1𝑛) to obtain (𝜇𝑞, sp𝑞,𝔾,1, … , sp𝑞,𝔾,𝑘, sp𝑞,ℍ,1, … , sp𝑞,ℍ,𝑘,
tr). It gives the map 𝜇𝑞 and the sampling parameters (sp𝑞,𝔾,1, … ,
sp𝑞,𝔾,𝑘), sp𝑞,ℍ,1, and tr𝑞 to 𝒜.

• Samples in 𝔾 The adversary may query for samples in 𝔾 and send a
query number 𝑞 to the challenger. For 𝑖 ∈ [𝑘], the challenger ℬ runs

𝐠(𝐢) = (𝑔(𝑖)
0 , … , 𝑔(𝑖)

𝑛+1) ← SampG𝑖(sp𝑞,𝔾,𝑖).

108

6.2. Towards Multi-authority Predicate Encryption in Prime-Order Groups

Depending on the challenger’s bit 𝑏, it gives the adversary

{
𝐠(L) = (∏𝑖∈L 𝑔(𝑖)

0 , … , ∏𝑖∈L 𝑔(𝑖)
𝑛+1) if 𝑏 = 0,

𝐠(R) = (∏𝑖∈R 𝑔(𝑖)
0 , … , ∏𝑖∈R 𝑔(𝑖)

𝑛+1) if 𝑏 = 1.

Guess The adversary outputs its guess 𝑏′ for the bit 𝑏. We define the
advantage of the adversary in winning the game as Pr[𝑏′ = 𝑏] − 1 ∕ 2.

Definition 18 ((L,R, 𝑧)-System Group Indistinguishability in ℍ). An in-
stantiation of 𝑘-system groups is (L,R, 𝑧)-system group indistinguishable in ℍ
for sets L,R ⊆ [𝑘] and 𝑧 ∈ L ∩ R, if every p.p.t. adversary 𝒜 has at most a
negligible advantage in winning the following game.

Setup The challenger ℬ chooses a random bit 𝑏. Next, the challenger runs
the SampGroup algorithm and gives gp to the adversary.

Query The adversary may query the challenger for sampling parameters, or
for samples in 𝔾 or ℍ.

• Parameters The adversary may query for the 𝑞th sampling parameters
and send the parameters size𝑛 to the challenger. The challengerℬ runs
SampP(gp, 1𝑛) to obtain (𝜇𝑞, sp𝑞,𝔾,1, … , sp𝑞,𝔾,𝑘, sp𝑞,ℍ,1, … , sp𝑞,ℍ,𝑘,
tr). It gives the map 𝜇𝑞 and the sampling parameters sp𝑞,𝔾,1, sp𝑞,𝔾,𝑖
for 𝑖 ∈ (L∖{𝑧})∪([𝑘] ∖R), and (sp𝑞,ℍ,1, … , sp𝑞,ℍ,𝑘) to the adversary.
Notice that the adversary does not receive the trapdoor tr.

• Samples in 𝔾 The adversary may query for samples in 𝔾 and send a
query number 𝑞 along with a value 𝑗 ∈ [𝑘] ∖ {𝑧} to the challenger. The
challenger ℬ runs for 𝑖 ∈ {𝑧, 𝑗}

𝐠(𝐢) = (𝑔(𝑖)
0 , … , 𝑔(𝑖)

𝑛) ← SampG𝑖(sp𝑞,𝔾,𝑖)

and sends 𝐠(𝐳,𝐣) = (𝑔(𝑧)
0 𝑔(𝑗)

0 , … , 𝑔(𝑧)
𝑛 𝑔(𝑗)

𝑛) to the adversary.

• Samples in ℍ The adversary may query for samples in ℍ and send a
query number 𝑞 to the challenger. For 𝑖 ∈ [𝑘], the challenger ℬ runs

𝐡(𝐢) = (ℎ(𝑖)
0 , … , ℎ(𝑖)

𝑛) ← SampH𝑖(sp𝑞,ℍ,𝑖).

Depending on the challenger’s bit 𝑏, it gives the adversary

{
𝐡(L) = (∏𝑖∈L ℎ(𝑖)

0 , … , ∏𝑖∈L ℎ(𝑖)
𝑛) if 𝑏 = 0,

𝐡(R) = (∏𝑖∈R ℎ(𝑖)
0 , … , ∏𝑖∈R ℎ(𝑖)

𝑛) if 𝑏 = 1.

109

Chapter 6. Directions for Extending the Work

Guess The adversary outputs its guess 𝑏′ for the bit 𝑏. We define the
advantage of the adversary in winning the game as Pr[𝑏′ = 𝑏] − 1 ∕ 2.

Definition 19 (Parameter-hiding). An instantiation of 𝑘-system groups is
parameter-hiding in system group 𝑖, if the following two experiments for 𝑏 ∈
{0, 1} are perfectly indistinguishable (i.e., their distributions are identical).

Setup The challenger ℬ runs the SampGroup algorithm and gives gp to the
adversary.

Query The adversary may query the challenger for sampling parameters, or
for samples in 𝔾 or ℍ.

• Parameters The adversary may query for the 𝑞th sampling parameters
and send the parameters size𝑛 to the challenger. The challengerℬ runs
SampP(gp, 1𝑛) to obtain (𝜇𝑞, sp𝑞,𝔾,1, … , sp𝑞,𝔾,𝑘, sp𝑞,ℍ,1, … , sp𝑞,ℍ,𝑘,
tr). Additionally, it picks values 𝛾𝑞,1, … , 𝛾𝑞,𝑛+1 which will be used
to uniformly re-randomize a value 𝑔(𝑖) of system group 𝑖. It gives the
map 𝜇𝑞 and the sampling parameters sp𝑞,𝔾,1 and sp𝑞,ℍ,1 to the adver-
sary.

• Samples in 𝔾 The adversary may query for samples in 𝔾 and send a
query number 𝑞 to the challenger. The challenger ℬ runs

𝐠(𝐢) = (𝑔(𝑖)
0 , … , 𝑔(𝑖)

𝑛+1) ← SampG𝑖(sp𝑞,𝔾,𝑖).

Depending on the challenger’s bit 𝑏, it gives the adversary

{
𝐠(𝐢) = (𝑔(𝑖)

0 , … , 𝑔(𝑖)
𝑛+1) if 𝑏 = 0,

𝐠(𝐢) ∘ 𝐠(𝐢)′ = (𝑔(𝑖)
0 , 𝑔(𝑖)

1 𝑔(𝑖)
0

𝛾𝑞,1, … , 𝑔(𝑖)
𝑛+1𝑔(𝑖)

0
𝛾𝑞,𝑛+1) if 𝑏 = 1.

• Samples in ℍ The adversary may query for samples in ℍ and send a
query number 𝑞 to the challenger. The challenger ℬ runs

𝐡(𝐢) = (ℎ(𝑖)
0 , … , ℎ(𝑖)

𝑛+1) ← SampH𝑖(sp𝑞,ℍ,𝑖).

Depending on the challenger’s bit 𝑏, it gives the adversary

{
𝐡(𝐢) = (ℎ(𝑖)

0 , … , ℎ(𝑖)
𝑛+1) if 𝑏 = 0,

𝐡(𝐢) ∘ 𝐡(𝐢)′ = (ℎ(𝑖)
0 , ℎ(𝑖)

1 ℎ(𝑖)
0

𝛾𝑞,1, … , ℎ(𝑖)
𝑛+1ℎ(𝑖)

0
𝛾𝑞,𝑛+1) if 𝑏 = 1.

110

6.2. Towards Multi-authority Predicate Encryption in Prime-Order Groups

6.2.6 Construction for Prime-Order Triple System Groups

We give a construction for a prime-order tsg using prime-order groups with
a Type 3 bilinear map defined on them. To ease the notation, we introduce
two projection maps 𝜋𝑖(⋅) and 𝜌𝑖(⋅). Let 𝜋𝑖(⋅), for 𝑖 ∈ [3], be a projection
map that maps a 3𝑑 × 3𝑑 matrix to the 3𝑑 × 𝑑 submatrix consisting of the
𝑑 columns 𝑑(𝑖 − 1) + 1 till 𝑑𝑖. Similarly, the projection map 𝜌𝑖(⋅) is defined
as the map from a 3𝑑 × 3𝑑 matrix to the 𝑑 × 3𝑑 submatrix consisting of the
𝑑 rows 𝑑(𝑖 − 1) + 1 till 𝑑𝑖. We extend the notation (by slightly abusing it)
to denote the 𝑖th number of 𝑑 rows of a submatrix or vector 𝐯 as 𝜌𝑖(𝐯) and
similarly 𝜋𝑖(𝐯) for a column vector.

Without showing the details here, we claim that it is easy to extend this
instantiation of prime-order tsg to prime-order 𝑘sg for any constant 𝑘.

SampGroup(1𝜆, 3). Define the elements

(𝑝, 𝔾1, 𝔾2, 𝔾𝑇, 𝑒, 𝑔1, 𝑔2) ← 𝒢3(1𝜆)
(𝔾, ℍ, 𝔾𝑇, 𝑒) = (𝔾3𝑑

1 , 𝔾3𝑑
2 , 𝔾𝑇, 𝑒)

U 𝑅← Diag3𝑑(ℤ∗
𝑝) with I2𝑑 in the lower-right corner,

where 𝑑 ≥ 2 is determined by the security parameter 𝜆. Note that a single
tsg element is represented by 3𝑑 group elements in 𝔾 and ℍ.

The global public group parameters gp are (𝑝, 𝔾, ℍ, 𝔾𝑇, 𝔾𝑟 = (ℤ𝑝)3𝑑,
𝑒, 𝑔1, 𝑔2, 𝑔 U

1). The global secret group parameters gs are empty in this prime
order construction.

SampP(gp, 1𝑛). Define

B 𝑅← GL3𝑑(ℤ𝑝) , B∗ = (B−1)T;
A0, … , A𝑛

𝑅← (ℤ𝑝)3𝑑×3𝑑

and the linear map

𝜇: 𝐡 ↦ 𝑒(𝑔 𝜋1(BU)
1 , 𝐡) for all 𝐡 ∈ ℍ.

Note that we can compute 𝑔 BU
1 from 𝑔 U

1 ∈ gp and the matrix B. Output the
linear map 𝜇 together with the sampling parameters for 𝑖 ∈ [3],

sp𝔾,𝑖 = (𝑔 𝜋𝑖(BU)
1 , 𝑔 𝜋𝑖(BA0U)

1 , … , 𝑔 𝜋𝑖(BA𝑛U)
1) ;

spℍ,𝑖 = (𝑔 𝜋𝑖(B∗)
2 , 𝑔 𝜋𝑖(B∗AT

0)
2 , … , 𝑔𝜋𝑖(B∗AT

𝑛)
2) ;

tr = (𝜋1(B∗), 𝜋1(B∗AT
0), … , 𝜋1(B∗AT

𝑛)) .

111

Chapter 6. Directions for Extending the Work

SampGT(𝜇(𝐡); 𝐬). Using 𝐬 𝑅← (ℤ𝑝)3𝑑, output 𝑔 𝜌1(𝐬)T𝐤
𝑇 , where 𝑔 𝐤

𝑇 = 𝜇(𝐡).
SampG𝑖(sp𝔾,𝑖; 𝐬). Using 𝐬 𝑅← (ℤ𝑝)3𝑑, output 𝑛 + 2 samples

(𝑔 𝜋𝑖(BU)𝜌𝑖(𝐬)
1 , 𝑔 𝜋𝑖(BA0U)𝜌𝑖(𝐬)

1 , … , 𝑔 𝜋1(BA𝑛U)𝜌𝑖(𝐬)
1) .

SampH𝑖(spℍ,𝑖; 𝐫). Using 𝐫 𝑅← (ℤ𝑝)3𝑑, output 𝑛 + 2 samples

(𝑔 𝜋𝑖(B∗)𝜌𝑖(𝐫)
2 , 𝑔 𝜋𝑖(B∗AT

0)𝜌𝑖(𝐫)
2 , … , 𝑔 𝜋𝑖(B∗AT

𝑛)𝜌𝑖(𝐫)
2) .

MapH₁(spℍ,1, 𝑔 𝐫
2). On input of 𝑔 𝐫

2 ∈ ℍ, use 𝑔 𝜌1(𝐫)
2 ∈ (𝔾2)𝑑 ⊂ ℍ to output

the 𝑛 + 2 elements in ℍ,

(𝑔 𝜋1(B∗)𝜌1(𝐫)
2 , 𝑔 𝜋1(B∗AT

0)𝜌1(𝐫)
2 , … , 𝑔 𝜋1(B∗AT

𝑛)𝜌1(𝐫)
2) .

Observe that we can compute these values since we know the values 𝜋1(B∗),
𝜋1(B∗AT

0), … , 𝜋1(B∗AT
𝑛) from tr.

6.2.7 Proofs for the Properties of Our tsg Construction

We prove that the construction from Section 6.2.6 satisfies the properties
that an instance of tsg needs to satisfy.

Theorem 13. The prime-order triple system groups construction is correct.

Proof. We can directly prove the projective property via

SampGT(𝜇(𝐡); 𝐬) = 𝑒(𝑔 𝜋1(BU)𝜌1(𝐬)
1 , 𝐡)

= 𝑒(𝑔(1)
0 , 𝐡) ,

since (𝑔(1)
0 = 𝑔 𝜋1(BU)𝜌1(𝐬)

1 , …) ← SampG₁(sp𝔾,1; 𝐬).
For the associative property we have to show that

𝑒(𝑔(1)
0 , ℎ(1)

𝑖) = 𝑒(𝑔 𝜋1(BU)𝜌1(𝐬)
1 , 𝑔 𝜋1(B∗AT

𝑖)𝜌1(𝐫)
2)

= 𝑒(𝑔 𝜋1(BA𝑖U)𝜌1(𝐬)
1 , 𝑔 𝜋1(B∗)𝜌1(𝐫)

2)
= 𝑒(𝑔(1)

𝑖 , ℎ(1)
0) .

Observe that

(BU)TB∗AT
𝑖 = UTBTB∗AT

𝑖 = UTAT
𝑖 = (A𝑖U)TBTB∗ = (BA𝑖U)TB∗,

therefore we also have for the submatrices

(𝜋1(BU)𝜌1(𝐬))T𝜋1(B∗AT
𝑖)𝜌1(𝐫) = (𝜋1(BA𝑖U)𝜌1(𝐬))T𝜋1(B∗)𝜌1(𝐫).

112

6.2. Towards Multi-authority Predicate Encryption in Prime-Order Groups

Theorem 14. The prime-order triple system groups construction satisfies the
homomorphic property.

Proof. Clearly,

SampG𝑖(sp𝔾,𝑖, 𝑠1) ⋅ SampG𝑖(sp𝔾,𝑖, 𝑠2)

= (𝑔 𝜋𝑖(BU)𝜌𝑖(𝐬𝟏)
1 , …) ∘ (𝑔 𝜋𝑖(BU)𝜌𝑖(𝐬𝟐)

1 , …)

= (𝑔 𝜋𝑖(BU)(𝜌𝑖(𝐬𝟏)+𝜌𝑖(𝐬𝟐))
1 , …)

= SampG𝑖(sp𝔾,𝑖, 𝑠1 + 𝑠2).

Theorem 15. The prime-order triple system groups construction satisfies the
orthogonality property.

Proof. We have to show that, for all 2 ≤ 𝑖 ≤ 𝑘,

𝜇(𝐡(𝐢)) = 𝜇(𝑔 𝜋𝑖(B∗)𝜌𝑖(𝐫)
2) = 𝑒(𝑔 𝜋1(BU)

1 , 𝑔 𝜋𝑖(B∗)𝜌𝑖(𝐫)
2) = 𝟙.

Observe that

𝜋1(BU)T𝜋𝑖(B∗) = 𝜌1(UBT)𝜋𝑖(B∗) = 𝟎,

for 2 ≤ 𝑖 ≤ 𝑘, and the proof follows directly.

Theorem 16. The prime-order triple system groups construction satisfies the
non-degeneracy property.

Proof. We have to show that 𝑒(𝑔(𝑖)
0 , ℎ(𝑖)

0)𝑎 = 𝑒(𝑔 𝜋𝑖(BU)𝜌𝑖(𝐬)
1 , 𝑔 𝜋𝑖(B∗)𝜌𝑖(𝐫)

2)𝑎 ≡
𝑔 𝑏

𝑇. Observe that for 2 ≤ 𝑖 ≤ 𝑘

(𝜋𝑖(BU)𝜌𝑖(𝐬))T𝜋𝑖(B∗)𝜌𝑖(𝐫) ⋅ 𝑎 = 𝜋𝑖(𝐬T)𝜌𝑖(UBT)𝜋𝑖(B∗)𝜌𝑖(𝐫) ⋅ 𝑎
= 𝜋𝑖(𝐬T)I𝑑𝜌𝑖(𝐫) ⋅ 𝑎
≡ 𝑏,

and the proof follows directly.

Lemma 8. The prime-order triple system groups construction is ({1}, {1, 𝑐})-
system group indistinguishable in 𝔾 for 2 ≤ 𝑐 ≤ 𝑘, if no adversary can gain a non-
negligible advantage in winning the generalized 𝑑-linear game (see Definition 15).

Proof. We construct a challenger ℬ, capable of winning the generalized 𝑑-
linear game with a non-negligible advantage, using an adversary 𝒜, winning
the ({1}, {1, 𝑐})-system group indistinguishability game in 𝔾 with a non-
negligible advantage.

113

Chapter 6. Directions for Extending the Work

In the proof description, we use values ̃𝑎𝑑+1, … , ̃𝑎2𝑑 and 𝑡𝑑+1, … , 𝑡2𝑑
which are initially left undefined. At the end of the proof, we explain how we
can set these variables to obtain the desired theorem using a hybrid argument.

Setup Challenger ℬ engages as adversary in the Setup of the generalized 𝑑-
linear game to obtain the group parameters gp and the values (𝑔 𝐚

1 , 𝑔 𝑎𝑑+1
1 , 𝑔 𝐚

2).
It sets (𝔾, ℍ, 𝔾𝑇, 𝑒) = (𝔾3𝑑

1 , 𝔾3𝑑
2 , 𝔾𝑇, 𝑒) using the values from gp and

indirectly sets U by picking �̃�1, … , �̃�𝑑
𝑅← ℤ∗

𝑝,

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎1�̃�1
⋱

𝑎𝑑�̃�𝑑
1

⋱
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

recall U has dimensions 3𝑑×3𝑑.

The challenger sends gp = (𝑝, 𝔾, ℍ, 𝔾𝑇, 𝔾𝑟 = (ℤ𝑝)3𝑑, 𝑒, 𝑔1, 𝑔2, 𝑔 U
1) to the

adversary and sets the counter value 𝑞 = 0.

Query The challenger can answer queries for sampling parameters or for
samples in 𝔾 and ℍ. Before it does so, it first defines auxiliary matrices W
and W∗. Let W be a sparse matrix with 1s across the diagonal and

𝜌𝑐(𝜋1(W)) = ⎛⎜
⎝

𝑎−1
1 ̃𝑎𝑑+1 ⋯ 𝑎−1

𝑑 ̃𝑎𝑑+1
⋮ ⋱ ⋮

𝑎−1
1 ̃𝑎2𝑑 ⋯ 𝑎−1

𝑑 ̃𝑎2𝑑

⎞⎟
⎠

.

The matrix W∗ is set to (W−1)T.
For the sake of clarity, we show the matrices for the case 𝑐 = 2,

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
⋱

1
𝑎−1

1 ̃𝑎𝑑+1 ⋯ 𝑎−1
𝑑 ̃𝑎𝑑+1 1

⋮ ⋱ ⋮ ⋱
𝑎−1

1 ̃𝑎2𝑑 ⋯ 𝑎−1
𝑑 ̃𝑎2𝑑 1

1
⋱

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

;

114

6.2. Towards Multi-authority Predicate Encryption in Prime-Order Groups

W∗ = (W−1)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −𝑎−1
1 ̃𝑎𝑑+1 ⋯ −𝑎−1

1 ̃𝑎2𝑑
⋱ ⋮ ⋱ ⋮

1 −𝑎−1
𝑑 ̃𝑎𝑑+1 ⋯ −𝑎−1

𝑑 ̃𝑎2𝑑
1

⋱
1

1
⋱

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Therefore, we have that

WU =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎1�̃�1
⋱

𝑎𝑑�̃�𝑑
̃𝑎𝑑+1�̃�1 ⋯ ̃𝑎𝑑+1�̃�𝑑 1

⋮ ⋱ ⋮ ⋱
̃𝑎2𝑑�̃�1 ⋯ ̃𝑎2𝑑�̃�𝑑 1

1
⋱

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

• The challenger answers the 𝑞th query for new sampling parameters
upon receiving the parameters size 𝑛. The challenger sets

B̃𝑞
𝑅← GL3𝑑(ℤ𝑝) , B̃∗

𝑞 = (B̃−1
𝑞)T, B𝑞 = B̃𝑞W, B∗

𝑞 = B̃∗
𝑞W∗

𝑞,

Ã𝑞,0, … , Ã𝑞,𝑛
𝑅← (ℤ𝑝)3𝑑×3𝑑, A𝑞,𝑖 = W−1Ã𝑞,𝑖W for 𝑖 ∈ [𝑛]+.

Note that matrices B𝑞, B∗
𝑞, A𝑞,0, … , A𝑞,𝑛 are correctly distributed and

that setting these variables implies

B𝑞A𝑞,𝑖 = B̃𝑞WW−1Ã𝑞,𝑖W = B̃𝑞Ã𝑞,𝑖W

and

B∗
𝑞AT

𝑞,𝑖 = B̃∗
𝑞W∗(W−1Ã𝑞,𝑖W)T

= B̃∗
𝑞W∗WTÃT

𝑞,𝑖(W−1)T

= B̃∗
𝑞ÃT

𝑞,𝑖W∗.

Now, the challenger ℬ can set sp𝔾,𝑖 as

𝑔 𝜋𝑖(B𝑞U)
1 = 𝑔 𝜋𝑖(B̃𝑞WU)

1 = 𝑔 B̃𝑞𝜋𝑖(WU)
1 ,

𝑔 𝜋𝑖(B𝑞A𝑞,𝑖U)
1 = 𝑔 𝜋𝑖(B̃𝑞Ã𝑞,𝑖WU)

1 = 𝑔 B̃𝑞Ã𝑞,𝑖𝜋𝑖(WU)
1 ,

115

Chapter 6. Directions for Extending the Work

using the values B̃𝑞, B̃𝑞Ã𝑞,𝑖, and 𝑔 𝜋𝑖(WU)
1 .

The challenger ℬ can also set spℍ,𝑖, for 𝑖 ≠ 𝑐, as

𝑔 𝜋𝑖(B∗
𝑞)

2 = 𝑔 𝜋𝑖(B̃∗
𝑞W∗)

2 = 𝑔 B̃∗
𝑞𝜋𝑖(W∗)

2 = 𝑔 𝜋𝑖(B̃∗
𝑞)

2 ,

𝑔 𝜋𝑖(B∗
𝑞AT

𝑞,𝑖)
2 = 𝑔 𝜋𝑖(B̃∗

𝑞ÃT
𝑞,𝑖W∗)

2 = 𝑔 B̃∗
𝑞ÃT

𝑞,𝑖𝜋𝑖(W∗)
2 = 𝑔 𝜋𝑖(B̃∗

𝑞ÃT
𝑞,𝑖)

2 ,

using the values B̃∗
𝑞 and B̃∗

𝑞ÃT
𝑞,𝑖. Observe that we used the fact that

𝜋𝑖(W∗) = 𝜋𝑖(I3𝑑) for 𝑖 ≠ 𝑐.
Also note that ℬ can set tr as

𝜋1(B∗
𝑞) = 𝜋1(B̃∗

𝑞W∗) = B̃∗
𝑞𝜋1(W∗) = 𝜋1(B̃∗

𝑞),

𝜋1(B∗
𝑞AT

𝑞,𝑖) = 𝜋1(B̃∗
𝑞ÃT

𝑞,𝑖W∗) = B̃∗
𝑞ÃT

𝑞,𝑖𝜋1(W∗) = 𝜋1(B̃∗
𝑞ÃT

𝑞,𝑖).

Finally, the challenger ℬ can define the map

𝜇𝑞 : 𝐡 ↦ 𝑒(𝑔 𝜋1(B𝑞U)
1 , 𝐡) = 𝑒(𝑔 B̃𝑞𝜋1(WU)

1 , 𝐡) .

• To answer a query for samples in 𝔾 for the 𝑞th sampling parameters,
the challenger ℬ first queries in the generalized 𝑑-linear game for a
challenge query. It receives the tuple

(𝑔 𝐚∘𝐭
1 , 𝑔𝑎𝑑+1 ∑𝑑

𝑖=1 𝑡𝑖+𝑡𝑑+1
1) ,

where either 𝑡𝑑+1 = 0 or 𝑡𝑑+1 ∈𝑅 ℤ∗
𝑝.

The challenger indirectly sets 𝐬 ∈ (ℤ𝑝)3𝑑 by setting 𝑠1 = ̃𝑟−1
1 𝑡1, … ,

𝑠𝑑 = ̃𝑟−1
𝑑 𝑡𝑑 and 𝑠𝑑(𝑐−1)+1 = ̃𝑡𝑑+1, … , 𝑠𝑑𝑐 = ̃𝑡𝑑𝑐, all other components

are set to 0. Now, observe that ̃𝐬 = WU𝐬 is a vector where ̃𝑠1 =
𝑎1𝑡1, … , ̃𝑠𝑑 = 𝑎𝑑𝑡𝑑 and ̃𝑠𝑑(𝑐−1)+1 = ̃𝑎𝑑+1 ∑𝑑

𝑖=1 𝑡𝑖 + ̃𝑡𝑑+1, … , ̃𝑠𝑑𝑐 =
̃𝑎2𝑑 ∑𝑑

𝑖=1 𝑡𝑖 + ̃𝑡𝑑𝑐, all other components equal 0.
The challenger returns as challenge samples in 𝔾 the values

(𝑔 B𝑞U𝐬
1 , 𝑔 B𝑞A𝑞,0U𝐬

1 , … , 𝑔 B𝑞A𝑞,𝑛U𝐬
1) =

(𝑔 B̃𝑞 ̃𝐬
1 , 𝑔 B̃𝑞Ã𝑞,0 ̃𝐬

1 , … , 𝑔 B̃𝑞Ã𝑞,𝑛 ̃𝐬
1) .

Observe that if we have set ̃𝑎𝑑+1 = 𝑎𝑑+1 and ̃𝑡𝑑+1 = 𝑡𝑑+1, and set all
other ̃𝑎𝑖 = 0 and ̃𝑡𝑖 = 0 for 𝑑 + 1 < 𝑖 ≤ 2𝑑, we have constructed either a

116

6.2. Towards Multi-authority Predicate Encryption in Prime-Order Groups

sample 𝐠(𝟏) or some sample 𝐠(𝟏)′ with 1 out of 𝑑 elements from 𝐠(𝐜). Now,
if we set ̃𝑎𝑑+1, ̃𝑡𝑑+1

𝑅← ℤ∗
𝑝, set ̃𝑎𝑑+2 = 𝑎𝑑+1 and ̃𝑡𝑑+2 = 𝑡𝑑+1, and set all

other ̃𝑎𝑖 = 0 and ̃𝑡𝑖 = 0 for 𝑑 + 2 < 𝑖 ≤ 2𝑑, we have constructed either the
sample 𝐠(𝟏)′ or another sample with two elements from 𝐠(𝐜). So, following a
hybrid argument using 𝑑 hybrids, we can arrive at an indistinguishable game
between samples 𝐠(𝟏) and sample 𝐠(𝟏,𝐜).

Theorem 17. The prime-order triple system groups construction is ({1},{1,2,3})-
system group indistinguishable in 𝔾 if no adversary can gain a non-negligible
advantage in winning the generalized 𝑑-linear game.

Proof. From Lemma 8, we know that no p.p.t. adversary can gain a non-
negligible advantage in winning the ({1}, {1, 𝑐})-system group indistinguish-
able in 𝔾 game (under the 𝑑-linear assumption).

Observe that the challenger can multiply the challenge 𝐠(L) or 𝐠(R) with
𝐠(𝐣) for any value 𝑗 ∈ [3]∖{1, 𝑐}, since it knows sp𝔾,𝑗. Using a hybrid argument,
we thus obtain that 𝐠(𝟏) ≈𝑐 𝐠(𝟏,𝟐) ≈𝑐 𝐠(𝟏,𝟐,𝟑).

Theorem 18. The prime-order triple system groups construction is (L,R, 𝑧)-
system group indistinguishable in ℍ if no adversary can gain a non-negligible
advantage in winning the generalized 𝑑-linear game.

Proof. We construct a challenger ℬ, capable of winning the generalized 𝑑-
linear game with a non-negligible advantage, using an adversary 𝒜, winning
the ({𝑧}, {𝑧, 𝑐}, 𝑧)-system group indistinguishability game in ℍ with a non-
negligible advantage. Using a hybrid argument similar to the arugment used
in Theorem 17, we obtain the desired theorem.

In the proof description, we use values ̃𝑎𝑑+1, … , ̃𝑎2𝑑 and 𝑡𝑑+1, … , 𝑡2𝑑
which are initially left undefined. At the end of the proof, we explain how we
can set these variables to obtain the desired theorem using a hybrid argument.

Setup Challenger ℬ engages as the adversary in the Setup of the generalized
𝑑-linear game to obtain the group parameters gp and values (𝑔 𝐚

1 , 𝑔 𝐚
2 , 𝑔 𝑎𝑑+1

2).
It sets (𝔾, ℍ, 𝔾𝑇, 𝑒) = (𝔾3𝑑

1 , 𝔾3𝑑
2 , 𝔾𝑇, 𝑒) using the values from gp and

indirectly sets U by picking �̃�1, … , �̃�𝑑
𝑅← ℤ∗

𝑝,

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎1�̃�1
⋱

𝑎𝑑�̃�𝑑
1

⋱
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

recall U has dimensions 3𝑑×3𝑑.

117

Chapter 6. Directions for Extending the Work

The challenger sends gp = (𝑝, 𝔾, ℍ, 𝔾𝑇, 𝔾𝑟 = (ℤ𝑝)3𝑑, 𝑒, 𝑔1, 𝑔2, 𝑔 U
1) to the

adversary and sets the counter value 𝑞 = 0.

Query The challenger can answer queries for sampling parameters or for
samples in 𝔾 and ℍ. Before it does so, it first defines auxiliary matrices W
and W∗. Let W be a sparse matrix with 1s across the diagonal, except for

𝜌𝑧(𝜋𝑧(W)) = ⎛⎜
⎝

𝑎−1
1

⋱
𝑎−1

𝑑

⎞⎟
⎠

,

and

𝜌𝑧(𝜋𝑐(W)) = ⎛⎜
⎝

−𝑎−1
1 ̃𝑎𝑑+1 ⋯ −𝑎−1

1 ̃𝑎2𝑑
⋮ ⋱ ⋮

−𝑎−1
𝑑 ̃𝑎𝑑+1 ⋯ −𝑎−1

𝑑 ̃𝑎2𝑑

⎞⎟
⎠

.

The matrix W∗ is set to (W−1)T.
For the sake of clarity, we show the matrices for the case 𝑐 = 2 and 𝑧 = 1,

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎−1
1 −𝑎−1

1 ̃𝑎𝑑+1 ⋯ −𝑎−1
1 ̃𝑎2𝑑

⋱ ⋮ ⋱ ⋮
𝑎−1

𝑑 −𝑎−1
𝑑 ̃𝑎𝑑+1 ⋯ −𝑎−1

𝑑 ̃𝑎2𝑑
1

⋱
1

1
⋱

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

;

W∗ = (W−1)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎1
⋱

𝑎𝑑
̃𝑎𝑑+1 ⋯ ̃𝑎𝑑+1 1
⋮ ⋱ ⋮ ⋱
̃𝑎2𝑑 ⋯ ̃𝑎2𝑑 1

1
⋱

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

118

6.2. Towards Multi-authority Predicate Encryption in Prime-Order Groups

Therefore, we have that

WU =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

�̃�1 −𝑎−1
1 ̃𝑎𝑑+1 ⋯ −𝑎−1

1 ̃𝑎2𝑑
⋱ ⋮ ⋱ ⋮

�̃�𝑑 −𝑎−1
𝑑 ̃𝑎𝑑+1 ⋯ −𝑎−1

𝑑 ̃𝑎2𝑑
1

⋱
1

1
⋱

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

• The challenger answers the 𝑞th query for new sampling parameters
upon receiving the parameters size 𝑛. The challenger sets

B̃𝑞
𝑅← GL3𝑑(ℤ𝑝) , B̃∗

𝑞 = (B̃−1
𝑞)T, B𝑞 = B̃𝑞W, B∗

𝑞 = B̃∗
𝑞W∗

𝑞,

Ã𝑞,0, … , Ã𝑞,𝑛
𝑅← (ℤ𝑝)3𝑑×3𝑑, A𝑞,𝑖 = W−1Ã𝑞,𝑖W for 𝑖 ∈ [𝑛]+.

Note that matrices B𝑞, B∗
𝑞, A𝑞,0, … , A𝑞,𝑛 are correctly distributed and

that setting these variables implies

B𝑞A𝑞,𝑖 = B̃𝑞WW−1Ã𝑞,𝑖W = B̃𝑞Ã𝑞,𝑖W

and

B∗
𝑞AT

𝑞,𝑖 = B̃∗
𝑞W∗(W−1Ã𝑞,𝑖W)T

= B̃∗
𝑞W∗WTÃT

𝑞,𝑖(W−1)T

= B̃∗
𝑞ÃT

𝑞,𝑖W∗.

Now, the challenger ℬ can set sp𝔾,𝑖, for 𝑖 ≠ 𝑐 and 𝑖 ≠ 𝑧 unless 𝑧 = 1
(note 𝑔 𝜋1(WU)

1 can always be computed, even if 𝑧 = 1), as

𝑔 𝜋𝑖(B𝑞U)
1 = 𝑔 𝜋𝑖(B̃𝑞WU)

1 = 𝑔 B̃𝑞𝜋𝑖(WU)
1 ,

𝑔 𝜋𝑖(B𝑞A𝑞,𝑖U)
1 = 𝑔 𝜋𝑖(B̃𝑞Ã𝑞,𝑖WU)

1 = 𝑔 B̃𝑞Ã𝑞,𝑖𝜋𝑖(WU)
1 ,

using the values B̃𝑞, B̃𝑞Ã𝑞,𝑖, and 𝑔 𝜋𝑖(WU)
1 .

The challenger ℬ can also set spℍ,𝑖 as

𝑔 𝜋𝑖(B∗
𝑞)

2 = 𝑔 𝜋𝑖(B̃∗
𝑞W∗)

2 = 𝑔 B̃∗
𝑞𝜋𝑖(W∗)

2 ,

𝑔 𝜋𝑖(B∗
𝑞AT

𝑞,𝑖)
2 = 𝑔 𝜋𝑖(B̃∗

𝑞ÃT
𝑞,𝑖W∗)

2 = 𝑔 B̃∗
𝑞ÃT

𝑞,𝑖𝜋𝑖(W∗)
2 ,

119

Chapter 6. Directions for Extending the Work

using the values B̃∗
𝑞, B̃∗

𝑞ÃT
𝑞,𝑖, and 𝑔 𝜋𝑖(W∗)

2 .

Finally, the challenger ℬ can define the map

𝜇𝑞 : 𝐡 ↦ 𝑒(𝑔 𝜋1(B𝑞U)
1 , 𝐡) = 𝑒(𝑔 B̃𝑞𝜋1(WU)

1 , 𝐡) .

• To answer a query for samples in 𝔾 for the 𝑞th sampling parameters
and value 𝑗 ∈ [𝑘], the challenger ℬ picks a vector �̃� ∈ (ℤ𝑝)3𝑑 with
̃𝑣𝑑(𝑖−1)+1, … , ̃𝑣𝑑𝑖

𝑅← ℤ𝑝 for 𝑖 ∈ {𝑧, 𝑗} (note that we allow 𝑧 = 𝑗) while
all other vector components are set to 0. The vector �̃� is used to
indirectly set 𝐬 = (WU)−1�̃�. Observe that 𝑠𝜂 ∈𝑅 ℤ𝑝 if and only if
̃𝑣𝜂 ∈𝑅 ℤ𝑝, and that the vector 𝐬 is thus correctly distributed.

The challenger sends

𝐠(𝐳,𝐣) = (𝑔 B𝑞U𝐬
1 , 𝑔 B𝑞A𝑞,0U𝐬

1 , … , 𝑔 B𝑞A𝑞,𝑛U𝐬
1)

= (𝑔 B̃𝑞WU(WU)−1�̃�
1 , 𝑔 B̃𝑞Ã𝑞,0WU(WU)−1�̃�

1 , … ,

𝑔 B̃𝑞Ã𝑞,𝑛WU(WU)−1�̃�
1)

= (𝑔 B̃𝑞�̃�
1 , 𝑔 B̃𝑞Ã𝑞,0�̃�

1 , … , 𝑔 B̃𝑞Ã𝑞,𝑛�̃�
1)

to the adversary.

• To answer a query for samples in ℍ for the 𝑞th sampling parameters,
the challenger ℬ first queries in the generalized 𝑑-linear game for a
challenge query. It receives the tuple

(𝑔 𝐚∘𝐭
2 , 𝑔𝑎𝑑+1 ∑𝑑

𝑖=1 𝑡𝑖+𝑡𝑑+1
2) ,

where either 𝑡𝑑+1 = 0 or 𝑡𝑑+1 ∈𝑅 ℤ∗
𝑝.

The challenger indirectly sets 𝐫 ∈ (ℤ𝑝)3𝑑 by setting 𝑟𝑑(𝑧−1)+1 = 𝑡1, … ,
𝑟𝑑𝑧 = 𝑡𝑑 and 𝑟𝑑(𝑐−1)+1 = ̃𝑡𝑑+1, … , 𝑟𝑑𝑐 = ̃𝑡𝑑𝑐, all other components
are set to 0. Observe that ̃𝐫 = W∗𝐫 is a vector where ̃𝑟𝑑(𝑧−1)+1 =
𝑎1𝑡1, … , ̃𝑟𝑑𝑧 = 𝑎𝑑𝑡𝑑 and ̃𝑟𝑑(𝑐−1)+1 = ̃𝑎𝑑+1 ∑𝑑

𝑖=1 𝑡𝑖 + ̃𝑡𝑑+1, … , ̃𝑟𝑑𝑐 =
̃𝑎2𝑑 ∑𝑑

𝑖=1 𝑡𝑖 + ̃𝑡𝑑𝑐, all other components equal 0.
The challenger returns as challenge samples in ℍ the values

(𝑔 B∗
𝑞𝐫

2 , 𝑔 B∗
𝑞AT

𝑞,0𝐫
2 , … , 𝑔 B∗

𝑞AT
𝑞,𝑛𝐫

2) = (𝑔 B̃∗
𝑞�̃�

2 , 𝑔 B̃∗
𝑞ÃT

𝑞,0�̃�
2 , … , 𝑔 B̃∗

𝑞ÃT
𝑞,𝑛�̃�

2) .

120

6.2. Towards Multi-authority Predicate Encryption in Prime-Order Groups

Observe that if we have set ̃𝑎𝑑+1 = 𝑎𝑑+1 and ̃𝑡𝑑+1 = 𝑡𝑑+1, and set all
other ̃𝑎𝑖 = 0 and ̃𝑡𝑖 = 0 for 𝑑 + 1 < 𝑖 ≤ 2𝑑, we have constructed either a
sample 𝐠(𝐳) or some sample 𝐠(𝐳)′ with one partial elements from 𝐠(𝐜). Now,
if we set ̃𝑎𝑑+1, ̃𝑡𝑑+1

𝑅← ℤ∗
𝑝, set ̃𝑎𝑑+2 = 𝑎𝑑+1 and ̃𝑡𝑑+2 = 𝑡𝑑+1, and set all

other ̃𝑎𝑖 = 0 and ̃𝑡𝑖 = 0 for 𝑑 + 2 < 𝑖 ≤ 2𝑑, we have constructed either the
sample 𝐠(𝐳)′ or another sample with two elements from 𝐠(𝐜). So, following a
hybrid argument using 𝑑 hybrids, we can arrive at an indistinguishable game
between samples 𝐠(𝐳) and sample 𝐠(𝐳,𝐜).

Theorem 19. The prime-order triple system groups construction is parameter-
hiding for all 𝑖 ≥ 2.

Proof Intuition. To simplify the notation, we use here the vectors 𝐬 and 𝐫 of
length 𝑑.

Note that

𝑔(𝑖)
0 = 𝑔 𝜋𝑖(B𝑞U)𝐬

1 , 𝑔(𝑖)
𝑗 = 𝑔 𝜋𝑖(B𝑞A𝑞,𝑗U)𝐬

1

ℎ(𝑖)
0 = 𝑔 𝜋𝑖(B∗

𝑞)𝐫
2 , ℎ(𝑖)

𝑗 = 𝑔 𝜋𝑖(B∗
𝑞AT

𝑞,𝑗)𝐫
2

and we can (uniformly) re-randomize 𝑔(𝑖)
0 , ℎ(𝑖)

0 respectively, using a vector 𝜸𝑞,𝑗,

𝑔(𝑖)
0

𝛾𝑞,𝑗 = 𝑔 𝜋𝑖(B𝑞U)(𝐬∘𝜸𝑞,𝑗)
1 and ℎ(𝑖)

0
𝛾𝑞,𝑗 = 𝑔 𝜋𝑖(B∗

𝑞)(𝐫∘𝜸𝑞,𝑗)
1 .

We have to show that

{𝑔(𝑖)
𝑗 , ℎ(𝑖)

𝑗 } ≡ {𝑔(𝑖)
𝑗 𝑔(𝑖)

0
𝛾𝑞,𝑗, ℎ(𝑖)

𝑗 ℎ(𝑖)
0

𝛾𝑞,𝑗}

for all 𝑗 and 𝑞. Let Ã𝑞,𝑗 be a sparse matrix where we only set the subma-
trix 𝜌𝑖(𝜋𝑖(Ã𝑞,𝑗)) of Ã𝑞,𝑗 to a random diagonal matrix in ℤ𝑑×𝑑

𝑝 ,

𝜌𝑖(𝜋𝑖(Ã𝑞,𝑗)) = I𝑑𝜸𝑞,𝑗 = ⎛⎜
⎝

𝛾𝑞,𝑗,1
⋱

𝛾𝑞,𝑗,𝑑

⎞⎟
⎠

.

Define A′
𝑞,𝑗 = A𝑞,𝑗 + Ã𝑞,𝑗 and observe that

𝑔 𝜋𝑖(B𝑞A′
𝑞,𝑗U)𝐬

1 = 𝑔 𝜋𝑖(B𝑞A𝑞,𝑗U+B𝑞Ã𝑞,𝑗U)𝐬
1

= 𝑔 𝜋𝑖(B𝑞A𝑞,𝑗U)𝐬
1 𝑔 𝜋𝑖(B𝑞Ã𝑞,𝑗U)𝐬

1 (𝜋𝑖 is linear)

= 𝑔 𝜋𝑖(B𝑞A𝑞,𝑗U)𝐬
1 𝑔 𝜋𝑖(B𝑞UÃ𝑞,𝑗)𝐬

1 (Ã𝑞,𝑗 and U are diagonal)

= 𝑔 𝜋𝑖(B𝑞A𝑞,𝑗U)𝐬
1 𝑔 𝜋𝑖(B𝑞U)𝜌𝑖(𝜋𝑖(Ã𝑞,𝑗))𝐬

1 (construction of Ã𝑞,𝑗)

121

Chapter 6. Directions for Extending the Work

= 𝑔 𝜋𝑖(B𝑞A𝑞,𝑗U)𝐬
1 𝑔 𝜋𝑖(B𝑞U)(𝜸𝑞,𝑗∘𝐬)

1

and

𝑔 𝜋𝑖(B∗
𝑞(A′

𝑞,𝑗)T)𝐫
2 = 𝑔 𝜋𝑖(B∗

𝑞AT
𝑞,𝑗+B∗

𝑞Ã𝑞,𝑗)𝐫
2 (Ã𝑞,𝑗 = ÃT

𝑞,𝑗)

= 𝑔 𝜋𝑖(B∗
𝑞A𝑞,𝑗)𝐫

2 𝑔 𝜋𝑖(B∗
𝑞Ã𝑞,𝑗)𝐫

2 (𝜋𝑖 is linear)

= 𝑔 𝜋𝑖(B∗
𝑞A𝑞,𝑗)𝐫

2 𝑔 𝜋𝑖(B∗
𝑞)𝜌𝑖(𝜋𝑖(Ã𝑞,𝑗))𝐫

2 (construction of Ã𝑞,𝑗)

= 𝑔 𝜋𝑖(B∗
𝑞A𝑞,𝑗)𝐫

2 𝑔 𝜋𝑖(B∗
𝑞)(𝜸𝑞,𝑗∘𝐫)

2 .

Furthermore, observe that if 𝜸𝑞,𝑗 = 𝟎 we obtain the first distribution and
if 𝜸𝑞,𝑗

𝑅← ℤ𝑑 we obtain the second distribution. Finally, observe that we
obtain identical distributions for A𝑞,𝑗 and A′

𝑞,𝑗.

6.2.8 Conversion from Encoding to Encryption

Now that we have defined tsg, we can give our conversion algorithm of
a multi-authority admissible pair encoding scheme (ma-pes) to an ma-pe
scheme in terms of the tsg.

We require that identities are unique random elements from the identity
space ℐ𝒟 = ℍ. This may for example be achieve by choosing a cryptographic
hash function 𝐻: {0, 1}∗ → ℍ and hash the ID to obtain a random element
in 𝑔𝐫

2 ∈𝑅 ℍ.

GlobalSetup(1𝜆). The GlobalSetup algorithm first runs SampGroup(1𝜆)
to obtain the group parameters (gp,gs). The global public parameters pp
are gp. The message space ℳ is 𝔾𝑇, the identity space ℐ𝒟 = ℍ.

AuthoritySetup(pp,para). Given an ma-pes for para , the algorithm runs
AuthorityParam(para) to obtain 𝑛. It uses SampP(gp, 1𝑛) to obtain

(𝜇, sp𝔾,1, sp𝔾,2, sp𝔾,3, spℍ,1, spℍ,2, spℍ,3, tr)

and picks sk 𝑅← ℍ.
The authority’s pk and msk are defined as

pk = (sp𝔾,1, 𝜇(sk)) and msk = (tr, sk) .

Encrypt({(pka , 𝑥a)}a∈A , 𝑚). Pick 𝛿a
𝑅← ℤ𝑝 for all a ∈ A and set the

value 𝑒(𝑔1, 𝑔2)Δ = ∏a∈A 𝑒(𝑔1, 𝑔2)𝛿a . Blind the message 𝑚 ∈ 𝔾𝑇 using
𝑒(𝑔1, 𝑔2)Δ to obtain ct0 = 𝑚 ⋅ 𝑒(𝑔1, 𝑔2)Δ.

122

6.2. Towards Multi-authority Predicate Encryption in Prime-Order Groups

Pick an a ′ ∈ A and set𝜔a′ = − ∑a∈A∖{a′} 𝜔a , where𝜔a
𝑅← 𝔾𝑟 for a ≠ a ′.

Compute (Ω(1)
a,0, … , Ω(1)

a,𝑛+1) ← SampG₁(spa,𝔾,1; 𝜔a), for a ∈ A , using the
spa,𝔾,1 from pka .

Now, for each authority a ∈ A continue as follows (we frequently
drop the index a—when there is no ambiguity—to simplify notation). Run
EncCta (𝑝, 𝑥a) to obtain 𝑤1, 𝑤2, and polynomials (𝑐1, … , 𝑐𝑤3

). Pick 𝑠0
𝑅← 𝔾𝑟

and set (𝑔(1)
a,0,0, … , 𝑔(1)

a,0,𝑛+1) ← SampG₁(spa,𝔾,1; 𝑠0). For 𝑖 ∈ [𝑤1 + 𝑤2], sam-
ple (𝑔(1)

a,𝑖,0, … , 𝑔(1)
a,𝑖,𝑛+1) ← SampG₁(spa,𝔾,1). Set cta,1,𝑖 = 𝑔(1)

a,𝑖,0 for 𝑖 ∈ [𝑤1]+
and

cta,2,ℓ = (Ω(1)
a,0)

𝜂ℓ ⋅ ∏
𝑧∈[𝑤2]

(𝑔(1)
a,𝑤1+𝑧,0)

𝜂ℓ,𝑧 ⋅ ∏
𝑖∈[𝑤1]+,𝑗∈[𝑛]+

(𝑔(1)
a,𝑖,𝑗)

𝜂ℓ,𝑖,𝑗

for ℓ ∈ [𝑤3]. Blind the value 𝑒(𝑔1, 𝑔2)𝛿a using SampGT(𝜇(ska); 𝑠0), by setting
cta,0 = 𝑒(𝑔1, 𝑔2)𝛿a ⋅ SampGT(𝜇(ska); 𝑠0).

The complete ciphertext is

ct = (ct0, {cta,0, cta,1,0, … , cta,1,𝑤1
, cta,2,1, … , cta,2,𝑤3

}a∈A).

KeyGen(mska , 𝑦, ID). The algorithm EncKeya (𝑝, 𝑦) is run to obtain 𝑚1, 𝑚2,
and polynomials (𝑘1, … , 𝑘𝑚3

). Use the hash function𝐻 to compute (ℎ(1)
0,0, … ,

ℎ(1)
0,𝑛+1) ← MapH₁(tr, 𝐻(ID)) and sample the values (ℎ(1)

𝑘,0, … , ℎ(1)
𝑘,𝑛+1) ←

SampH₁(spa,ℍ,1) for 𝑘 ∈ [𝑚1 + 𝑚2]. Set uska,1,𝑖 = ℎ(1)
𝑖,0 for 𝑖 ∈ [𝑚1]+ and

uska,2,ℓ = sk𝜙ℓa ⋅ ∏
𝑧∈[𝑚2]

(ℎ(1)
𝑚1+𝑧,0)

𝜙ℓ,𝑧 ⋅ ∏
𝑖∈[𝑚1]+,𝑗∈[𝑛]+

(ℎ(1)
𝑖,𝑗)

𝜙ℓ,𝑖,𝑗

for ℓ ∈ [𝑚3]. The complete user secret key for 𝑦 ∈ 𝒴𝜅(a) is

usk𝑦,ID = (uska,1,0, … ,uska,1,𝑚1
,uska,2,1, … ,uska,2,𝑚3

).

Decrypt({usk𝑦,ID}𝑦, ct). To decrypt the ciphertext ct, we first decrypt cta,0

for each authority a ∈ A . Run Paira (𝑝, 𝑥a , 𝑦a) to obtain Ea and Êa . Now
compute

cta,0 ⋅
⎛⎜⎜⎜
⎝

∏
𝑖∈[𝑤1]+,
ℓ∈[𝑚3]

𝑒(cta,1,𝑖,uska,2,ℓ)Ea,𝑖,ℓ ⋅ ∏
ℓ∈[𝑤3],
𝑖∈[𝑚1]+

𝑒(cta,2,ℓ,uska,1,𝑖)Êa,ℓ,i
⎞⎟⎟⎟
⎠

−1

to obtain the result 𝑒(𝑔1, 𝑔2)𝛿a+𝜉a for some value 𝜉a . Note that these values 𝜉a
correspond to the values 𝜔a𝑟0 of the pair encoding and that the values 𝜔a
sum to 0. We can now combine these results to obtain

∏
a∈A

𝑒(𝑔1, 𝑔2)𝛿a+𝜉a = 𝑒(𝑔1, 𝑔2)Δ+0 = 𝑒(𝑔1, 𝑔2)Δ ,

and recover the plaintext 𝑚 = ct0 ⋅ 𝑒(𝑔1, 𝑔2)−Δ.

123

Chapter 6. Directions for Extending the Work

6.2.9 Proving the Conversion Algorithm Secure

The proofs for the new conversion algorithm described above should be
very similar to the proofs from Section 5.6. Sadly, we believe that it is not
possible to simulate all values for corrupted authorities a ∈ ̄𝐼 (e.g., tr cannot
always be simulated). However, if we omit the requirement to withstand
corruptions, we believe the proofs can be delivered. For example, to prove
Lemmas 2 and 3, we nowdo not use Assumption 4, but use indistinguishability
in 𝔾 (see Definition 17). For Lemmas 4 and 5 we use indistinguishability
in ℍ (Definition 18) and parameter-hiding (Definition 19). The final lemma,
Lemma 6, can be proven using Assumption 8.

Observe that Lemma 5 in the original construction of Chapter 5 is based
on Assumption 6, which corresponds in the new construction to requiring
that an adversary cannot distinguish values ℎ(12) from ℎ(13). We claim this
is the case. We can show that an adversary cannot distinguish values ℎ(1)

from ℎ(12) (i.e., ({1}, {1, 2}, 2)-System Group Indistinguishability in ℍ), can-
not distinguish ℎ(12) from ℎ(123) (({1, 2}, {1, 2, 3}, 3)-ind). Similarly, we have
({1}, {1, 3}, 3)-ind and ({1, 3}, {1, 2, 3}, 2)-ind. Hence, we can show using
a hybrid argument that ℎ(12) and ℎ(123) are indistinguishable and that ℎ(13)

and ℎ(123) are indistinguishable. So, we may conclude that ℎ(12) and ℎ(13) are
indistinguishable.

We only show the proof for Lemma 6 here.

Lemma (Game2,𝑞,2 ≈𝑐 Game₃). Any p.p.t. adversary 𝒜, making at most 𝑞 key
queries for distinct IDs and having at most a negligible advantage in breaking
Assumption 8, has at most a negligible advantage in distinguishing Game2,𝑞,2

from Game₃.

Proof. The challenger ℬ obtains (𝑔1, 𝑔2, 𝑔 𝑥
2 , 𝑔 𝑦

1 , 𝑔 𝑎1
1 , … , 𝑔 𝑎𝑑

1 , 𝑔 𝑎1
2 , … , 𝑔 𝑎𝑑

2 ,
𝑔 𝑎1𝑧1

1 , … , 𝑔 𝑎𝑑𝑧𝑑
1 , 𝑔 𝑎1𝑧1

2 , … , 𝑔 𝑎𝑑𝑧𝑑
2 , 𝑇) where either 𝑇 = 𝑒(𝑔1, 𝑔2)𝑥𝑦(𝑧1+⋯+𝑧𝑑)

or 𝑇 ∈𝑅 𝔾𝑇. We write 𝐚 for the column vector (𝑎1, … , 𝑎𝑑)T, 𝐱 for the
column vector (𝑥, … , 𝑥)T of length 𝑑, and similarly, 𝐲 for (𝑦, … , 𝑦)T, and 𝐳
for (𝑧1, … , 𝑧𝑑)T.

We describe the phases of the security game.

Setup We run SampGroup as in the original scheme, setting 𝑔 U
1 by choosing

�̃�1, … , �̃�𝑑
𝑅← ℤ∗

𝑝 and setting 𝑎1�̃�1, … , 𝑎𝑑�̃�𝑑 as the first 𝑑 elements on the
diagonal of U. Let Ā be a sparse matrix with as only non-zero elements

𝜌3(𝜋3(Ā)) = I𝑑 ⋅ 𝐳 = ⎛⎜
⎝

𝑧1
⋱

𝑧𝑑

⎞⎟
⎠

.

124

6.2. Towards Multi-authority Predicate Encryption in Prime-Order Groups

Hash Oracle Upon receiving oracle query ID for the hash function 𝐻, the
challenger ℬ checks if it received the query before, and if so, answers with
the same reply as before. If 𝒜 has not queried for the hash value of ID before,
ℬ picks vectors 𝐫0,ID,1, ̃𝐫0,ID,3

𝑅← (ℤ𝑝)𝑑 and sets 𝐫0,ID,3 = −𝐱 + 𝐚 ∘ ̃𝐫0,ID,3. It
answers the query with 𝑔 𝐫0,ID,1

2 .

Authority Queries Request for a new authority a using para are answered
by the challenger by first running AuthorityParam(para) to obtain 𝑛. Next,
the challenger (indirectly) sets

Ba
𝑅← GL3𝑑(ℤ𝑝) , B∗

a = (B−1
a)T, Ãa,0, Aa,1, … , Aa,𝑛

𝑅← (ℤ𝑝)3𝑑×3𝑑,

Aa,0 = Ãa,0 + Ā.

The challenger picks 𝜶a,1, 𝜶a,2, �̃�a,3
𝑅← (ℤ𝑝)𝑑 and indirectly sets 𝜶a,3 =

(𝑥𝐳 − �̃�a,3). Let 𝜶a be the vector (𝜶a,1; 𝜶a,2; 𝜶a,3). The challenger gives 𝒜
the public key pk = (sp𝔾,1, 𝜇(sk)) as

(𝑔 𝜋1(BaU)
1 , 𝑔 𝜋1(BaAa,0U)

1 , … , 𝑔 𝜋1(BaAa,𝑛U)
1 , 𝑒(𝑔 𝜋1(BaU)

1 , 𝑔 B∗
a𝜶a

2))

= (𝑔 𝜋1(BaU)
1 , 𝑔 𝜋1(Ba(Ãa,0+Ā)U)

1 , 𝑔 𝜋1(BaAa,1U)
1 , … , 𝑔 𝜋1(BaAa,𝑛U)

1 ,

𝑒(𝑔 𝜋1(BaU)
1 , 𝑔 𝜋1(B∗

a)𝜌1(𝜶a)
2))

= (𝑔 𝜋1(BaU)
1 , 𝑔 𝜋1(BaAa,0U)

1 ⋅ 𝑔 𝜋1(BaĀU)
1 , 𝑔 𝜋1(BaAa,1U)

1 , … ,

𝑔 𝜋1(BaAa,𝑛U)
1 , 𝑒(𝑔 𝜌1(𝜋1(U))

1 , 𝑔 𝜶a,1
2))

= (𝑔 Ba𝜋1(U)
1 , 𝑔 BaAa,0𝜋1(U)

1 , 𝑔 BaAa,1𝜋1(U)
1 , … , 𝑔 BaAa,𝑛𝜋1(U)

1 ,

𝑒(𝑔 𝜌1(𝜋1(U))
1 , 𝑔 𝜶a,1

2))

and adds a to the set 𝐼. Note that 𝑔 𝜋1(U)
1 can be computed using 𝑔 𝐚

1 .

Key Queries Upon receiving a key query (a , 𝑦 ∈ 𝒴𝜅(a), ID) for an uncor-
rupted authority a ∈ 𝐼, ℬ answers the query with a semi-functional key
of type II. The challenger ℬ computes KeyGen(ska , 𝑦; (1, 3), 𝐮ID) as follows.
First, it sets

uska,1,0 = 𝑔 𝜋1(B∗
a)𝐫0,ID,1+𝜋3(B∗

a)𝐫0,ID,3
2

= 𝑔 𝜋1(B∗
a)𝐫0,ID,1+𝜋3(B̃∗

a)(−𝐱+𝐚∘�̃�0,ID,3)
2 ,

125

Chapter 6. Directions for Extending the Work

and for 𝑖 ∈ [𝑚1 + 𝑚2], uska,1,𝑖 = 𝑔 𝜋1(B∗
a)𝐫𝑖,1+𝜋3(B∗

a)𝐫𝑖,3
2 , where 𝐫𝑖,1, ̃𝐫𝑖,3

𝑅←
(ℤ𝑝)𝑑 and 𝐫𝑖,3 = 𝐚 ∘ ̃𝐫𝑖,3.

Next, to construct the values uska,2,ℓ, consider two cases. Either the
encoding 𝑘ℓ contains both the symbols 𝛼 and 𝑏0𝑟0, or it does not contain this
combination (i.e., 𝜙ℓ = 𝜙ℓ,0,0, see Section 5.4.1).

In the case that𝛼 and 𝑏0𝑟0 do not occur in 𝑘ℓ, ℬ can readily create uska,2,ℓ
using the values uska,1,𝑚1+1, … ,uska,1,𝑚1+𝑚2

(corresponding to ̂𝑟𝑖), values
(corresponding to 𝑏0𝑟𝑖 for 𝑖 ∈ [𝑚1])

𝑔 𝜋1(B∗
aAT

a,1)𝐫𝑖,1+𝜋3(B∗
aAT

a,1)𝐫𝑖,3
2

= 𝑔 𝜋1(B∗
a(Ãa,1+Ā)T)𝐫𝑖,1+𝜋3(B∗

a(Ãa,1+Ā)T)(𝐚∘�̃�𝑖,3)
2

= 𝑔 𝜋1(B∗
aÃT

a,1)𝐫𝑖,1
2 𝑔 𝜋3(B∗

aÃT
a,1)(𝐚∘�̃�𝑖,3)

2 𝑔 𝜋3(B∗
aĀT)(𝐚∘�̃�𝑖,3)

2 ,

where 𝑔 𝜋3(B∗ÃT
a,1)(𝐚∘�̃�𝑖,3)

2 can be constructed using 𝑔 𝐚
2 and 𝑔 𝜋3(B∗ĀT)(𝐚∘�̃�𝑖,3)

2 us-
ing 𝑔 𝐚∘𝐳

2 , the values (corresponding to 𝑏𝑗𝑟0 for 𝑗 ∈ [𝑛])

𝑔 𝜋1(B∗
aAT

a,𝑗)𝐫0,ID,1+𝜋3(B∗
aAT

a,𝑗)𝐫0,ID,3
2

= 𝑔 𝜋1(B∗
aAT

a,𝑗)𝐫0,ID,1+𝜋3(B∗
aAT

a,𝑗)(−𝐱+𝐚∘�̃�0,ID,3)
2 ,

which can be constructed using 𝑔 𝑥
2 and 𝑔 𝐚

2 , and the values (corresponding
to 𝑏𝑗𝑟𝑖 for 𝑖 ∈ [𝑚1] and 𝑗 ∈ [𝑛])

𝑔 𝜋1(B∗
aAT

a,𝑗)𝐫𝑖,1+𝜋3(B∗
aAT

a,𝑗)𝐫𝑖,3
2 = 𝑔 𝜋1(B∗

aAT
a,𝑗)𝐫𝑖,1+𝜋3(B̃∗

aAT
a,𝑗)(𝐚∘�̃�𝑖,3)

2 ,

which can be computed using 𝑔 𝐚
2 .

In the case that both 𝛼 and 𝑏0𝑟0 occur in 𝑘ℓ, observe that ℬ needs to
compute

𝑔 𝜙ℓ(B∗
a𝜶a)+𝜙ℓ,0,0(𝜋1(B∗

aAT
a,0)𝐫0,ID,1+𝜋3(B∗

aAT
a,0)𝐫0,ID,3)

2

= 𝑔 𝜙ℓ(𝜋1(B∗
a)𝜶a,1+𝜋2(B∗

a)𝜶a,2+𝜋3(B∗
a)𝜶a,3+𝜋1(B∗

aAT
a,0)𝐫0,ID,1+𝜋3(B∗

aAT
a,0)𝐫0,ID,3)

2
(since 𝜙ℓ = 𝜙ℓ,0,0)

= 𝑔 𝜙ℓ(𝜋1(B∗
a)𝜶a,1+𝜋2(B∗

a)𝜶a,2+𝜋3(B∗
a)(𝑥𝐳−�̃�a,3))

2

⋅ 𝑔 𝜙ℓB∗
a(𝜋1(ÃT

a,0+ĀT)𝐫0,ID,1+𝜋3(ÃT
a,0+ĀT)(−𝐱+𝐚∘�̃�0,ID,3))

2

= 𝑔 𝜙ℓ(𝜋1(B∗
a)𝜶a,1+𝜋2(B∗

a)𝜶a,2−𝜋3(B∗
a)�̃�a,3)

2

⋅ 𝑔 𝜙ℓB∗
a(𝜋1(ÃT

a,0)𝐫0,ID,1+𝜋3(ÃT
a,0)(−𝐱+𝐚∘�̃�0,ID,3)+𝜋3(ĀT)(𝐚∘�̃�0,ID,3))

2 ,

126

6.2. Towards Multi-authority Predicate Encryption in Prime-Order Groups

where in the last step we have used the fact that 𝜋3(B∗
a)⋅𝑥𝐳−𝜋3(B∗

aĀ)𝐱 = 𝟎.
Note that in this case, we can compute uska,2,ℓ too, using 𝑔 𝑥

2 , 𝑔 𝐚
2 , and 𝑔 𝐚∘𝐳

2 .
Furthermore, note that the key queries are created with properly distrib-

uted semi-functional keys of type II.

Challenge Ciphertext Whenever 𝒜 requests the ciphertext challenge by
sending (𝑚0, 𝑚1, {𝑥∗

a}a∈A∗), the challenger ℬ picks 𝑏 𝑅← {0, 1} and encrypts
message 𝑚𝑏 as a semi-functional challenge ciphertext.

Choose an authority a ′ ∈ A∗. For each authority a ∈ A∗ ∖ a ′, pick
𝝎a,1

𝑅← (ℤ𝑝)𝑑 and 𝛿a
𝑅← ℤ𝑝, and set 𝝎a′,1 = − ∑a∈A∗∖a′ 𝝎a,1 and indirectly

set 𝛿a′ = 𝑥𝑦(𝑧1 + ⋯ + 𝑧𝑑) − ∑a∈A∗∖a′ 𝛿a . Additionally, pick 𝝎a,2, �̃�a,3
𝑅←

(ℤ𝑝)𝑑 for all a ∈ A∗ and (indirectly) set 𝝎a′ = (𝝎a′,1; 𝝎a′,2; 𝑦𝐳 + �̃�a′,3) and
𝝎a = (𝝎a,1; 𝝎a,2; �̃�a,3) for all a ∈ A∗ ∖ a ′. Blind the message 𝑚𝑏 ∈ 𝔾𝑇
using 𝑇 to obtain ct0 = 𝑚𝑏 ⋅ 𝑇. Note that if 𝑇 = 𝑒(𝑔1, 𝑔2)𝑥𝑦(𝑧1+⋯+𝑧𝑑), the
challenger simulates Game2,𝑞,2 using Δ = 𝑥𝑦(𝑧1 + ⋯ + 𝑧𝑑) and otherwise,
if 𝑇 ∈𝑅 𝔾𝑇, the challenger simulates Game₃.

Now, for each authority a ∈ A∗ continue as follows (we frequently
drop the index a—when there is no ambiguity—to simplify notation). Run
EncCta (𝑝, 𝑥) to obtain 𝑤1, 𝑤2, and polynomials (𝑐1, … , 𝑐𝑤3

).
If a = a ′, pick 𝐬a′,𝑖,1, 𝐬a′,𝑖,2, ̃𝐬a′,𝑖,3

𝑅← (ℤ𝑝)𝑑 for 𝑖 ∈ [𝑤1 + 𝑤2]+. Set
𝐬a′,0,3 = −𝐲 + 𝐚 ∘ ̃𝐬a′,0,3 and for 𝑖 ∈ [𝑤1 + 𝑤2], set 𝐬a′,𝑖,3 = 𝐚 ∘ ̃𝐬a′,𝑖,3. Set

cta′,1,0 = 𝑔 𝜋1(Ba′U)𝐬a′,0,1+𝜋2(Ba′U)𝐬a′,0,2+𝜋3(Ba′U)𝐬a′,0,3
1

= 𝑔 𝜋1(Ba′U)𝐬a′,0,1+𝜋2(Ba′)𝐬a′,0,2+𝜋3(Ba′)(−𝐲+𝐚∘ ̃𝐬a′,0,3)
1 .

Observe that cta′,1,0 can be computed using 𝑔 𝑦
1 and 𝑔 𝐚

1 . The elements

cta′,1,𝑖 = 𝑔 𝜋1(Ba′U)𝐬a′,𝑖,1+𝜋2(Ba′U)𝐬a′,𝑖,2+𝜋3(Ba′U)𝐬a′,𝑖,3
1

= 𝑔 𝜋1(Ba′U)𝐬a′,𝑖,1+𝜋2(Ba′)𝐬a′,𝑖,2+𝜋3(Ba′)(𝐚∘ ̃𝐬a′,𝑖,3)
1 .

for 𝑖 ∈ [𝑤1] can also readily be computed using 𝑔 𝐚
1 .

Next, to construct the values cta′,2,ℓ, consider two cases. Either the
encoding 𝑐ℓ contains both the symbol 𝜔 and 𝑏0𝑠0, or it does not contain this
combination (i.e., 𝜂ℓ = 𝜂ℓ,0,0, see Section 5.4.1).

In the case that 𝜔 and 𝑏0𝑠0 do not occur in 𝑐ℓ, ℬ can readily create

𝑔 𝜋1(Ba′U)𝐬a′,𝑖,1+𝜋2(Ba′)𝐬a′,𝑖,2+𝜋3(Ba′)(𝐚∘ ̃𝐬a′,𝑖,3)
1

for 𝑤1 + 1 ≤ 𝑖 ≤ 𝑤1 + 𝑤2 (corresponding to ̂𝑠𝑖), the values

𝑔 𝜋1(Ba′Aa′,0U)𝐬a′,𝑖,1+𝜋2(Ba′Aa′,0U)𝐬a′,𝑖,2+𝜋3(Ba′Aa′,0U)𝐬a′,𝑖,3
1

127

Chapter 6. Directions for Extending the Work

= 𝑔 Ba′(𝜋1((Ãa′,0+Ā)U)𝐬a′,𝑖,1+𝜋2((Ãa′,0+Ā))𝐬a′,𝑖,2+𝜋3((Ãa′,0+Ā))(𝐚∘ ̃𝐬a′,𝑖,3))
1

= 𝑔 Ba′(𝜋1(Ãa′,0U)𝐬a′,𝑖,1+𝜋2(Ãa′,0)𝐬a′,𝑖,2+𝜋3(Ãa′,0)(𝐚∘ ̃𝐬a′,𝑖,3)+𝜋3(Ā)(𝐚∘ ̃𝐬a′,𝑖,3))
1 ,

for 𝑖 ∈ [𝑤1] (corresponding to 𝑏0𝑠𝑖), the values

𝑔 𝜋1(Ba′Aa′,𝑗U)𝐬a′,0,1+𝜋2(Ba′Aa′,𝑗U)𝐬a′,0,2+𝜋3(Ba′Aa′,𝑗U)𝐬a′,0,3
1

= 𝑔 𝜋1(Ba′Aa′,𝑗U)𝐬a′,0,1+𝜋2(Ba′Aa′,𝑗)𝐬a′,0,2+𝜋3(Ba′Aa′,𝑗)(−𝐲+𝐚∘ ̃𝐬a′,0,3)
1 ,

for 𝑗 ∈ [𝑛] (corresponding to 𝑏𝑗𝑠0), and the values

𝑔 𝜋1(Ba′Aa′,𝑗U)𝐬a′,𝑖,1+𝜋2(Ba′Aa′,𝑗U)𝐬a′,𝑖,2+𝜋3(Ba′Aa′,𝑗U)𝐬a′,𝑖,3
1

= 𝑔 𝜋1(Ba′Aa′,𝑗U)𝐬a′,𝑖,1+𝜋2(Ba′Aa′,𝑗)𝐬a′,𝑖,2+𝜋3(Ba′Aa′,𝑗)(𝐚∘ ̃𝐬a′,𝑖,3)
1 ,

for 𝑖 ∈ [𝑤1] and 𝑗 ∈ [𝑛] (corresponding to 𝑏𝑗𝑠𝑖).
In the case that both 𝜔 and 𝑏0𝑠0 occur in 𝑐ℓ, observe that ℬ needs to

compute

𝑔 𝜂ℓ(Ba′U𝝎a′)+𝜂ℓ,0,0(Ba′Aa′,0U(𝐬a′,0,1;𝐬a′,0,2;𝐬a′,0,3))
1

= 𝑔 𝜂ℓBa′(U𝝎′
a′+Aa′,0U(𝐬a′,0,1;𝐬a′,0,2;−𝐲+𝐚∘ ̃𝐬a′,0,3))

1 (since 𝜂ℓ = 𝜂ℓ,0,0)

= 𝑔 𝜂ℓBa′(U(𝝎a′,1;𝝎a′,2;𝑦𝐳+�̃�a′,3)+(Ãa′,0+Ā)U(𝐬a′,0,1;𝐬a′,0,2;−𝐲+𝐚∘ ̃𝐬a′,0,3))
1

= 𝑔 𝜂ℓBa′(U(𝝎a′,1;𝝎a′,2;�̃�a′,3)+Ãa′,0U(𝐬a′,0,1;𝐬a′,0,2;−𝐲+𝐚∘ ̃𝐬a′,0,3)+𝜋3(Ā)(𝐚∘ ̃𝐬a′,0,3))
1

where in the last step we have used the fact that 𝜋3(U) ⋅ 𝑦𝐳 − 𝜋3(ĀU)𝐲 = 𝟎.
Note that in this case, we can compute cta′,2,ℓ too, using the values 𝑔 𝑦

1 , 𝑔 𝐚
1 ,

and 𝑔 𝐚∘𝐳
1 .

The challenger blinds the value 𝑒(𝑔1, 𝑔2)𝛿a′ by setting cta′,0 as

𝑒(𝑔1, 𝑔2)𝛿a′ ⋅ 𝑒(𝑔 Ba′U(𝐬a′,0,1;𝐬a′,0,2;𝐬a′,0,3)
1 , 𝑔 B∗

a′𝜶a′
2)

= 𝑒(𝑔1, 𝑔2)𝑥𝑦(𝑧1+⋯+𝑧𝑑)−∑a∈A∗∖a′ 𝛿a

⋅ 𝑒(𝑔 Ba′U(𝐬a′,0,1;𝐬a′,0,2;−𝐲+𝐚∘ ̃𝐬a′,0,3)
1 , 𝑔 B∗

a′(𝜶a′,1;𝜶a′,2;𝑥𝐳−�̃�a′,3)
2)

= 𝑒(𝑔1, 𝑔2)𝑥𝑦(𝑧1+⋯+𝑧𝑑)−∑a∈A∗∖a′ 𝛿a

⋅ 𝑒(𝑔 𝜌1(𝜋1(U))𝐬a′,0,1
1 , 𝑔 𝜶a′,1

2) ⋅ 𝑒(𝑔 𝜌2(𝜋2(U))𝐬a′,0,2
1 , 𝑔 𝜶a′,2

2)

⋅ 𝑒(𝑔 𝜌3(𝜋3(U))(−𝐲+𝐚∘ ̃𝐬a′,0,3)
1 , 𝑔 𝑥𝐳−�̃�a′,3

2)

128

6.2. Towards Multi-authority Predicate Encryption in Prime-Order Groups

= 𝑒(𝑔1, 𝑔2)− ∑a∈A∗∖a′ 𝛿a ⋅ 𝑒(𝑔 𝜌1(𝜋1(U))𝐬a′,0,1
1 , 𝑔 𝜶a′,1

2) ⋅ 𝑒(𝑔 𝐬a′,0,2
1 , 𝑔 𝜶a′,2

2)

⋅ 𝑒(𝑔 𝐚∘ ̃𝐬a′,0,3
1 , 𝑔 𝑥𝐳

2) ⋅ 𝑒(𝑔 −𝐲+𝐚∘ ̃𝐬a′,0,3
1 , 𝑔 �̃�a′,3

2)

= 𝑒(𝑔1, 𝑔2)− ∑a∈A∗∖a′ 𝛿a ⋅ 𝑒(𝑔 𝜌1(𝜋1(U))𝐬a′,0,1
1 , 𝑔 𝜶a′,1

2) ⋅ 𝑒(𝑔 𝐬a′,0,2
1 , 𝑔 𝜶a′,2

2)

⋅ 𝑒(𝑔 𝐚∘𝐳∘ ̃𝐬a′,0,3
1 , 𝑔 𝐱

2) ⋅ 𝑒(𝑔 −𝐲+𝐚∘ ̃𝐬a′,0,3
1 , 𝑔 �̃�a′,3

2) ,

which can be computed using the values 𝑔 𝐚
1 , 𝑔 𝐚∘𝐳

1 , 𝑔 𝑥
2 , and 𝑔 𝑦

1 .
If a ≠ a ′, pick 𝐬a,𝑖,1, 𝐬a,𝑖,2, ̃𝐬a,𝑖,3

𝑅← (ℤ𝑝)𝑑 for 𝑖 ∈ [𝑤1 + 𝑤2]+ and set
𝐬a,𝑖 = (𝐬a,𝑖,1; 𝐬a,𝑖,2; 𝐚 ∘ ̃𝐬a,𝑖,3). Set cta,1,𝑖 = 𝑔 BaU𝐬a,𝑖

1 , for 𝑖 ∈ [𝑤1]+, which can
be computed using 𝑔 𝐚

1 .
To construct the values cta,2,ℓ, we use 𝑔 BaU𝐬a,𝑖

1 for 𝑤1 + 1 ≤ 𝑖 ≤ 𝑤1 + 𝑤2
(corresponding to ̂𝑠𝑖), which can be computed using 𝑔 𝐚

1 . We use

𝑔 BaAa,0U𝐬a,𝑖
1 = 𝑔 Ba(Ãa,0+Ā)U𝐬a,𝑖

1 = 𝑔 BaÃa,0U𝐬a,𝑖+𝜋3(BaĀ)(𝐚∘ ̃𝐬a,𝑖,3)
1

for 𝑖 ∈ [𝑤1]+ (corresponding to 𝑏0𝑠𝑖), which can be computed using 𝑔 𝐚
1

and 𝑔 𝐚∘𝐳
1 . We use 𝑔 BaAa,𝑗U𝐬a,𝑖

1 for 𝑖 ∈ [𝑤1]+, 𝑗 ∈ [𝑛] (corresponding to 𝑏𝑗𝑠𝑖),
which can be computed using 𝑔 𝐚

1 . Finally, note that we can also construct
the value 𝑔 BaU𝝎a

1 .
The challenger blinds the value 𝑒(𝑔1, 𝑔2)𝛿a by setting cta,0 as

𝑒(𝑔1, 𝑔2)𝛿a ⋅ 𝑒(𝑔 BaU𝐬a,0
1 , 𝑔 B∗

a𝜶a
2)

= 𝑒(𝑔1, 𝑔2)𝛿a ⋅ 𝑒(𝑔 U𝐬a,0
1 , 𝑔 𝜶a

2)

= 𝑒(𝑔1, 𝑔2)𝛿a ⋅ 𝑒(𝑔 𝜌1(𝜋1(U))𝐬a,0,1
1 , 𝑔 𝜶a,1

2) ⋅ 𝑒(𝑔 𝐬a,0,2
1 , 𝑔 𝜶a,2

2)

⋅ 𝑒(𝑔 𝐚∘ ̃𝐬a,0,3
1 , 𝑔 𝑥𝐳−�̃�a,3

2)

= 𝑒(𝑔1, 𝑔2)𝛿a ⋅ 𝑒(𝑔 𝜌1(𝜋1(U))𝐬a,0,1
1 , 𝑔 𝜶a,1

2) ⋅ 𝑒(𝑔 𝐬a,0,2
1 , 𝑔 𝜶a,2

2)

⋅ 𝑒(𝑔 𝐚∘𝐳∘ ̃𝐬a,0,3
1 , 𝑔 𝐱

2) ⋅ 𝑒(𝑔 𝐚∘ ̃𝐬a,0,3
1 , 𝑔 −�̃�a,3

2) ,

which can be computed using 𝑔 𝐚
1 , 𝑔 𝐚∘𝐳

1 , and 𝑔 𝑥
2 .

The complete challenge ciphertext is

ct = (ct0, {cta,0, cta,1,0, … , cta,1,𝑤1
, cta,2,1, … , cta,2,𝑤3

}a∈A∗).

Recall that this challenge ciphertext has the property that

∏
a∈A∗

𝑒(𝑔1, 𝑔2)𝛿a = 𝑒(𝑔1, 𝑔2)𝑥𝑦(𝑧1+⋯+𝑧𝑑) .

129

Chapter 6. Directions for Extending the Work

So, if 𝑇 = 𝑒(𝑔1, 𝑔2)𝑥𝑦(𝑧1+⋯+𝑧𝑑), the adversary 𝒜 is playing Game2,𝑞,2 and
otherwise, if 𝑇 ∈𝑅 𝔾𝑇, 𝒜 is playing Game₃.

130

.

7 Conclusions
. .

In this chapter,weconcludeour findings and summarize themain
contributions of this dissertation. We also discuss our results and
how they improve over the state-of-the-art.

In this dissertation, we have researched the possibility to strengthen the
control on data sharing through constructing new cryptographic algorithms.
We have established that it is possible to limit the amount of information
that is revealed during data sharing by encrypting the data using multi-client
functional encryption (mc-fe). Hence, we set ourselves the research goal
of developing “fine-grained data protection techniques” in the introduction
of this thesis. Central to our research are two research questions: Research
Question 1 on how new functionalities can be achieved, Research Question 2
on assessing the efficiency of the proposed schemes.

7.1 Ways of Achieving Special-Purpose mc-fe

Looking at the proposed constructions, we can answer Research Question 1
and also reflect on the necessary cryptographic primitives. We recognize
that mc-fe constructions can be based on a broad variety of cryptographic
primitives. For operations on two sets, we used a combination of pseudoran-
dom functions (prfs), secret sharing, and elliptic curve cryptography (ecc).
Using these relatively simple primitives, we are already able to build complex
functionalities, such as our threshold set intersection scheme. When taking
inputs from more than two clients, we require the use of hash functions.
The prime use of the hash function is to map a globally unique identifier,
ID ∈ ℐ𝒟, to a random (group) element so that mix-and-match attacks are
prevented. For all our multi-client constructions for set operations, we do
not require any other primitives, since building blocks like distributed encryp-
tion (de) can be constructed using the already mentioned primitives [lhk14].
To evaluate predicates using mc-fe, we see that we required pairing-based
cryptography (pbc) for both vector equality testing and our compiler for
multi-authority predicate encryption (ma-pe).

A natural question is whether we can construct mc-fe by relying on other
primitives than we used in our constructions. The most prominent question

131

Chapter 7. Conclusions

we might ask, is whether hash functions, and the use of the random oracle
model (rom) in the corresponding security proofs, are always necessary when
we consider a construction for more than two clients. While multi-authority
attribute-based encryption (ma-abe) schemes without relying on the rom
exist [lw11; lch⁺11], these schemes suffer from other drawbacks, such as
providing no collusion resistance or requiring interaction to obtain a new
identifier ID. These limitations make these approaches unsuitable for our
requirement of non-interactive mc-fe. Therefore it remains an open question
whether mc-fe schemes for more than two clients in the standard model
exists.

We note that mc-fe schemes exist that are based on other primitives. For
the inner-product functionality, where the function is to compute the value
of the inner-products ∑𝑛

𝑖=1⟨𝐱𝑖, 𝐲𝑖⟩ (not to be confused with inner-product
predicate encryption (ippe) where the inner-product serves as a test), there
exist constructions that can be based on learning with errors or Paillier’s
composite residuosity assumption [abk⁺19]. Whether these alternative com-
plexity assumptions are also applicable to other mc-fe functionalities is
unknown since these functionalities were only recently introduced as an
mc-fe scheme.

7.2 Efficiency of mc-fe

To answer Research Question 2 about the efficiency of the constructions,
we consider our own implementations of several schemes [criptim] and
evaluations in literature, as far as available. While for a specific use case
the efficiency might differ, we give a simplified overview of the (estimated)
efficiency of various schemes in Figure 7.1. We cannot report on the efficiency
of mc-fe for the inner-product functionality, as no implementations for these
schemes are available. Similarly, no general-purpose mc-fe schemes are
implemented, but insteadweuse evaluation results for single client functional
encryption (fe).

We see that the (special-purpose) mc-fe constructions for the function-
alities of summing and two-client set operations are most efficient. Both
constructions are also based on fast and simple cryptographic primitives,
such as hash functions and ecc. However, this is not a guarantee that the final
construction will be fast as well. For example, the construction for multi-
client set operations is also based on the same fast primitives, but is roughly
six orders of magnitude slower than their two client counterpart. With an
evaluation time within minutes on commodity hardware, these construc-
tions are also efficient enough for use in practice, although their applicability

132

7.2. Efficiency of mc-fe

sum 2c-so mc-so ve ma-pe 𝑖𝒪

≤milliseconds

seconds

minutes

≥ hours
Ti
m
e

Existing work
This dissertation

Figure 7.1. Overview
of the expected time
it takes to evaluate a
functionusing an��-��
scheme on commod-
ity hardware.
Constructions:
• summing ([���+11]);
• �� = Set Operations

(Chapter 3);
• �� = Vector Equality

(Chapter 4);
• ��-�� = multi-

authority predi-
cate encryption
(Chapter 5);

• 𝑖𝒪 = indistinguisha-
bility obfuscation
([���+15]).

generally depends on the concrete use case. Indeed, as we explain in the
detailed analysis in Section 3.8, the speed of a particular construction greatly
depends on the number of clients and the set sizes.

The pbc constructions for predicates, i.e., for vector equality testing or
using the ma-pe compiler, should be thought of having a running time in the
order of seconds formost use cases. The type of bilinearmap that is used has a
high influence on the speed of the constructions. Type 3 pairings are typically
significantly faster that Type 1 pairings for the same security level: Freeman
[Fre10] claims that Type 3 pairings can be about 50 times faster compared to
a composite-order Type 1 pairing. The vector equality testing scheme from
Chapter 4 uses Type 3 pairings, while the ma-pe schemes from Chapter 5
require a composite-order Type 1 pairing. However, depending on the use
case it can be acceptable to wait a few seconds to minutes before obtaining
the result of the computation, e.g., when monitoring multiple clients once
every hour. In case speed is a considerable bottleneck, Section 6.2 describes
a detailed idea on how to use a similar ma-pe compiler on prime-order Type 3
pairings.

From the figure it should be clear that general-purpose mc-fe schemes are
still far from practical. As explained, no general-purpose mc-fe constructions
have been implemented. There have only been some efforts in implementing
part of general-purpose fe schemes. Most evaluations [ahk⁺14; lma⁺16] are
on program obfuscations of point functions, i.e., a function that outputs true

133

Chapter 7. Conclusions

for one specific, obfuscated (hidden) value and false otherwise. Using a
supercomputer with several dozens (32–128) of cores and many gigabytes
of ram (250–2048) these constructions can get down to evaluation times of
several minutes for a claimed security level in the range between 𝜆 = 52
and 80 bits. Lewi et al. [lma⁺16] also implement order-revealing encryption
using multilinear maps. While the implemented construction is only multi-
input functional encryption (mi-fe), not multi-client, and limited to a special-
purpose, the evaluation time of a single comparison is still in the order of
minutes. For generic functionalities, Halevi et al. [hhs⁺17] implemented
small sized branching programs that they could evaluate in the order of
minutes, but also concluded that the obfuscation of non-trivial functions “is
still extremely limited.” Banescu et al. [bok⁺15] even estimated that it would
take 1.3 × 108 years for their unoptimized implementation of 𝑖𝒪 to evaluate
the relatively simple, single client, fe functionality of a 2-bit multiplication
circuit on a 2.6GHz CPU. Realizing that these results are for single-client fe
and that mc-fe implementations are presumably even complexer and also
slower, we conclude that general-purpose mc-fe is still far from practical.

Compared to general-purpose solutions, our special-purpose mc-fe are a
significant step forward in achieving controlled data sharing and effective
data sharing in a fine-grained and secure way. Depending on the use case,
our constructions are suitable to be applied in a practical scenario as they
are efficient and require only conventional and explicitly stated security
assumptions.

134

.

Bibliography
. .

Author References

[CRIPTIM] T. R. van de Kamp and M.H. Everts. Implementations of Controlled Data
Sharing Schemes. CRIPTIM consortium. url: https://github.com/
CRIPTIM/.

[KPE⁺16] T. R. van de Kamp, A. Peter, M.H. Everts, andW. Jonker. “Private Shar-
ing of IOCs and Sightings.” In:Workshop on Information Sharing and
Collaborative Security (wiscs). Ed. by E.-O. Blass and F. Kerschbaum.
ACM, Oct. 2016, pp. 35–38. doi: 10.1145/2994539.2994544.

[KPE⁺17] T. R. van de Kamp, A. Peter, M. H. Everts, and W. Jonker. “Multi-client
Predicate-Only Encryption for Conjunctive Equality Tests.” In: Cryp-
tology And Network Security (cans). Ed. by S. Capkun and S. S.M. Chow.
Vol. 11261. LNCS. Springer, 2017, pp. 135–157. doi: 10.1007/978-3-030-
02641-7_7.

[KPJ20] T. R. van de Kamp, A. Peter, and W. Jonker. “A Multi-authority Ap-
proach to Various Predicate Encryption Types.” In: Designs, Codes
and Cryptography (desi) 88.2 (Feb. 2020), pp. 363–390. doi: 10.1007/
s10623-019-00686-x.

[KSJ⁺19] T. R. van de Kamp, D. Stritzl, W. Jonker, and A. Peter. “Two-Client
and Multi-client Functional Encryption for Set Intersection.” In: Aus-
tralasian Conference on Information Security and Privacy (acisp). Ed. by
J. Jang-Jaccard and F. Guo. Vol. 11547. LNCS. Springer, 2019, pp. 97–115.
doi: 10.1007/978-3-030-21548-4_6.

Other References

[ABK⁺19] M. Abdalla, F. Benhamouda, M. Kohlweiss, and H. Waldner. “Decen-
tralizing Inner-Product Functional Encryption.” In: Public-Key Cryp-
tography (pkc). Ed. by D. Lin and K. Sako. Vol. 11443.II. LNCS. Springer,
2019, pp. 128–157. doi: 10.1007/978-3-030-17259-6_5.

[ABS17] M. Ambrona, G. Barthe, and B. Schmidt. “Generic Transformations
of Predicate Encodings: Constructions and Applications.” In: crypto.
Ed. by J. Katz and H. Shacham. Vol. 10401.I. LNCS. Springer, 2017,
pp. 36–66. doi: 10.1007/978-3-319-63688-7_2.

[AC15] S. Agrawal andM. Chase. A Study of Pair Encodings: Predicate Encryption
in Prime Order Groups. Tech. rep. Mar. 2017 (May 1, 2015). iacr: 2015/
413.

135

https://github.com/CRIPTIM/
https://github.com/CRIPTIM/
https://doi.org/10.1145/2994539.2994544
https://doi.org/10.1007/978-3-030-02641-7_7
https://doi.org/10.1007/978-3-030-02641-7_7
https://doi.org/10.1007/s10623-019-00686-x
https://doi.org/10.1007/s10623-019-00686-x
https://doi.org/10.1007/978-3-030-21548-4_6
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-319-63688-7_2
https://eprint.iacr.org/2015/413
https://eprint.iacr.org/2015/413

Bibliography

[AC16] S. Agrawal and M. Chase. “A Study of Pair Encodings: Predicate En-
cryption in Prime Order Groups.” In: Theory of Cryptography (tcc).
Ed. by E. Kushilevitz and T. Malkin. Vol. 9563.II. LNCS. Springer, 2016,
pp. 259–288. doi: 10.1007/978-3-662-49099-0_10.

[AC17] S. Agrawal andM. Chase. “Simplifying Design and Analysis of Complex
Predicate Encryption Schemes.” In: eurocrypt. Ed. by J.-S. Coron
and J. B. Nielsen. Vol. 10210.I. LNCS. Springer, 2017, pp. 627–656. doi:
10.1007/978-3-319-56620-7_22.

[ACD⁺06] M. Abdalla, D. Catalano, A.W. Dent, J. Malone-Lee, G. Neven, and
N. P. Smart. “Identity-Based Encryption Gone Wild.” In: International
Colloquium on Automata, Languages, and Programming (icalp). Ed. by
M. Bugliesi et al. Vol. 4052.II. LNCS. Springer, 2006, pp. 300–311. doi:
10.1007/11787006_26.

[AGM⁺13] J. A. Akinyele, C. Garman, I. Miers, M.W. Pagano, M. Rushanan, M.
Green, and A. D. Rubin. “Charm: a framework for rapidly prototyping
cryptosystems.” In: Journal of Cryptographic Engineering (jcen) 3.2
(June 2013). Ed. by Ç. K. Koç, pp. 111–128. doi: 10.1007/s13389-013-
0057-3. url: https://github.com/JHUISI/charm.

[AGR⁺17] M. Abdalla, R. Gay, M. Raykova, and H. Wee. “Multi-Input Inner-
Product Functional Encryption from Pairings.” In: eurocrypt. Ed.
by J.-S. Coron and J. B. Nielsen. Vol. 10210.I. LNCS. Springer, 2017,
pp. 601–626. doi: 10.1007/978-3-319-56620-7_21.

[AHK⁺14] D. Apon, Y. Huang, J. Katz, and A. J. Malozemoff. Implementing Crypto-
graphic Program Obfuscation. Tech. rep. Feb. 2015 (Oct. 1, 2014). iacr:
2014/779.

[AI09] N. Attrapadung and H. Imai. “Dual-Policy Attribute Based Encryp-
tion.” In: Applied Cryptography and Network Security (acns). Ed. by
M. Abdalla et al. Vol. 5536. LNCS. Springer, 2009, pp. 168–185. doi:
10.1007/978-3-642-01957-9_11.

[ATD15] A. Abadi, S. Terzis, and C. Dong. “O-PSI: Delegated Private Set Inter-
section on Outsourced Datasets.” In: ICT Systems Security and Privacy
Protection (sec). Ed. by H. Federrath and D. Gollmann. Vol. 455. IFI-
PAICT. Springer, 2015, pp. 3–17. doi: 10.1007/978-3-319-18467-8_1.

[ATD16] A. Abadi, S. Terzis, and C. Dong. “VD-PSI: Verifiable Delegated Private
Set Intersection on Outsourced Private Datasets.” In: Financial Cryp-
tography and Data Security (fc). Ed. by J. Grossklags and B. Preneel.
Vol. 9603. LNCS. Springer, 2016, pp. 149–168. doi: 10.1007/978-3-662-
54970-4_9.

[Att14] N. Attrapadung. “Dual System Encryption via Doubly Selective Se-
curity: Framework, Fully Secure Functional Encryption for Regular
Languages, and More.” In: eurocrypt. Ed. by P. Q. Nguyen and E. Os-
wald. Vol. 8441. LNCS. Springer, 2014, pp. 557–577. doi: 10.1007/978-
3-642-55220-5_31.

136

https://doi.org/10.1007/978-3-662-49099-0_10
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/11787006_26
https://doi.org/10.1007/s13389-013-0057-3
https://doi.org/10.1007/s13389-013-0057-3
https://github.com/JHUISI/charm
https://doi.org/10.1007/978-3-319-56620-7_21
https://eprint.iacr.org/2014/779
https://doi.org/10.1007/978-3-642-01957-9_11
https://doi.org/10.1007/978-3-319-18467-8_1
https://doi.org/10.1007/978-3-662-54970-4_9
https://doi.org/10.1007/978-3-662-54970-4_9
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-642-55220-5_31

Other References

[AY15] N. Attrapadung and S. Yamada. “Duality in ABE: Converting Attribute
Based Encryption for Dual Predicate and Dual Policy via Computa-
tional Encodings.” In: Cryptographers’ Track at the RSA Conference
(ct-rsa). Ed. by K. Nyberg. Vol. 9048. LNCS. Springer, 2015, pp. 87–
105. doi: 10.1007/978-3-319-16715-2_5.

[BB04a] D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity-Based En-
cryption Without Random Oracles. Tech. rep. Dec. 2004 (July 20, 2004).
iacr: 2004/172.

[BB04b] D. Boneh and X. Boyen. “Efficient Selective-ID Secure Identity-Based
Encryption Without Random Oracles.” In: eurocrypt. Ed. by C.
Cachin and J. L. Camenisch. Vol. 3027. LNCS. Springer, 2004, pp. 223–
238. doi: 10.1007/978-3-540-24676-3_14.

[BBS04] D. Boneh, X. Boyen, and H. Shacham. “Short Group Signatures.” In:
crypto. Ed. by M. Franklin. Vol. 3152. LNCS. Springer, 2004, pp. 41–55.
doi: 10.1007/978-3-540-28628-8_3.

[BD18] R. Barbulescu and S. Duquesne. “Updating Key Size Estimations for
Pairings.” In: Journal of Cryptology (j cryptol) (Jan. 2018). Ed. by K. G.
Paterson. doi: 10.1007/s00145-018-9280-5.

[BF01] D. Boneh and M. Franklin. “Identity-Based Encryption from the Weil
Pairing.” In: crypto. Ed. by J. Kilian. Vol. 2139. LNCS. Springer, 2001,
pp. 213–229. doi: 10.1007/3-540-44647-8_13.

[BGN05] D. Boneh, E.-J. Goh, and K. Nissim. “Evaluating 2-DNF Formulas
on Ciphertexts.” In: Theory of Cryptography (tcc). Ed. by J. Kilian.
Vol. 3378. LNCS. Springer, 2005, pp. 325–341. doi: 10.1007/978-3-540-
30576-7_18.

[BHJ⁺14] C. Bösch, P. Hartel, W. Jonker, and A. Peter. “A Survey of Provably
Secure Searchable Encryption.” In: ACM Computing Surveys (csur)
47.2 (Aug. 2014). Ed. by S. Sahni, 18:1–18:51. doi: 10.1145/2636328.

[BHJ⁺19] B. Barak, S. B. Hopkins, A. Jain, P. Kothari, and A. Sahai. “Sum-of-
Squares Meets Program Obfuscation, Revisited.” In: eurocrypt. Ed.
by Y. Ishai and V. Rijmen. Vol. 11476.I. LNCS. Springer, 2019, pp. 226–
250. doi: 10.1007/978-3-030-17653-2_8.

[BKR13] M. Bellare, S. Keelveedhi, and T. Ristenpart. “Message-Locked Encryp-
tion and Secure Deduplication.” In: eurocrypt. Ed. by T. Johansson
and P.Q. Nguyen. Vol. 7881. LNCS. Springer, 2013, pp. 296–312. doi:
10.1007/978-3-642-38348-9_18.

[Blo70] B. H. Bloom. “Space/Time Trade-offs in Hash Coding with Allowable
Errors.” In:Communications of the ACM (commun. acm) 13.7 (July 1970).
Ed. by M. Stuart Lynn, pp. 422–426. doi: 10.1145/362686.362692.

137

https://doi.org/10.1007/978-3-319-16715-2_5
https://eprint.iacr.org/2004/172
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1145/2636328
https://doi.org/10.1007/978-3-030-17653-2_8
https://doi.org/10.1007/978-3-642-38348-9_18
https://doi.org/10.1145/362686.362692

Bibliography

[BLR⁺15] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and J. Zimmer-
man. “Semantically Secure Order-Revealing Encryption: Multi-input
Functional Encryption Without Obfuscation.” In: eurocrypt. Ed. by
E. Oswald and M. Fischlin. Vol. 9057.II. LNCS. Springer, 2015, pp. 563–
594. doi: 10.1007/978-3-662-46803-6_19.

[BN00] M. Bellare and C. Namprempre. “Authenticated Encryption: Relations
among Notions and Analysis of the Generic Composition Paradigm.”
In: asiacrypt. Ed. by T. Okamoto. Vol. 1976. LNCS. Springer, 2000,
pp. 531–545. doi: 10.1007/3-540-44448-3_41.

[BN06] P. S. L.M. Barreto and M. Naehrig. “Pairing-Friendly Elliptic Curves
of Prime Order.” In: Selected Areas in Cryptography (sac). Ed. by B.
Preneel and S. Tavares. Vol. 3897. LNCS. Springer, 2006, pp. 319–331.
doi: 10.1007/11693383_22.

[BOK⁺15] S. Banescu, M. Ochoa, N. Kunze, and A. Pretschner. “Idea: Benchmark-
ing Indistinguishability Obfuscation – A Candidate Implementation.”
In: Engineering Secure Software and Systems (essos). Ed. by F. Piessens
et al. Vol. 8978. LNCS. Springer, 2015, pp. 149–156. doi: 10.1007/978-3-
319-15618-7_12.

[BS15] Z. Brakerski and G. Segev. “Function-Private Functional Encryption
in the Private-Key Setting.” In: Theory of Cryptography (tcc). Ed. by Y.
Dodis and J. B. Nielsen. Vol. 9015. LNCS. Springer, 2015, pp. 306–324.
doi: 10.1007/978-3-662-46497-7_12.

[BSW11] D. Boneh, A. Sahai, and B.Waters. “Functional Encryption: Definitions
and Challenges.” In: Theory of Cryptography (tcc). Ed. by Y. Ishai.
Vol. 6597. LNCS. Springer, 2011, pp. 253–273. doi: 10.1007/978-3-642-
19571-6_16.

[BSW13] K. Benson, H. Shacham, and B. Waters. “The 𝑘-BDH Assumption
Family: Bilinear Map Cryptography from Progressively Weaker As-
sumptions.” In: Cryptographers’ Track at the RSA Conference (ct-rsa).
Ed. by E. Dawson. Vol. 7779. LNCS. Springer, 2013, pp. 310–325. doi:
10.1007/978-3-642-36095-4_20.

[BW06] X. Boyen and B. Waters. “Anonymous Hierarchical Identity-Based
Encryption (Without RandomOracles).” In: crypto. Ed. by C. Dwork.
Springer, 2006, pp. 290–307. doi: 10.1007/11818175_17.

[BW07] D. Boneh and B. Waters. “Conjunctive, Subset, and Range Queries on
Encrypted Data.” In: Theory of Cryptography (tcc). Ed. by S. P. Vadhan.
Vol. 4392. LNCS. Springer, 2007, pp. 535–554. doi: 10.1007/978-3-540-
70936-7_29.

[BWY11] M. Bellare, B. Waters, and S. Yilek. “Identity-Based Encryption Secure
against Selective Opening Attack.” In: Theory of Cryptography (tcc).
Ed. by Y. Ishai. Vol. 6597. LNCS. Springer, 2011, pp. 235–252. doi: 10.
1007/978-3-642-19571-6_15.

138

https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-319-15618-7_12
https://doi.org/10.1007/978-3-319-15618-7_12
https://doi.org/10.1007/978-3-662-46497-7_12
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-36095-4_20
https://doi.org/10.1007/11818175_17
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-642-19571-6_15
https://doi.org/10.1007/978-3-642-19571-6_15

Other References

[BZ06] M. Barbaro and T. Zeller Jr. A Face Is Exposed for AOL Searcher No.
4417749. The New York Times Company. Aug. 9, 2006. url: https:
//nyti.ms/2k4BTyC (visited on 2019-05-01).

[CC09] M. Chase and S. S.M. Chow. “Improving Privacy and Security in Multi-
authority Attribute-based Encryption.” In:Conference on Computer and
Communications Security (ccs). Ed. by E. Al-Shaer et al. ACM, 2009,
pp. 121–130. doi: 10.1145/1653662.1653678.

[CDG⁺18] J. Chotard, E. Dufour Sans, R. Gay, D.H. Phan, and D. Pointcheval.
“Decentralized Multi-Client Functional Encryption for Inner Prod-
uct.” In: asiacrypt. Ed. by T. Peyrin and S. Galbraith. Vol. 11273. LNCS.
Springer, 2018, pp. 703–732. doi: 10.1007/978-3-030-03329-3_24.

[CFS⁺17] X. Carpent, S. Faber, T. Sander, and G. Tsudik. “Private Set Projections
& Variants.” In:Workshop on Privacy in the Electronic Society (wpes).
Ed. by A. J. Lee. ACM, 2017, pp. 87–98. doi: 10.1145/3139550.3139554.

[CGH17] Y. Chen, C. Gentry, and S. Halevi. “Cryptanalyses of Candidate Branch-
ing Program Obfuscators.” In: eurocrypt. Ed. by J.-S. Coron and
J. B. Nielsen. Vol. 10212.III. LNCS. Springer, 2017, pp. 278–307. doi:
10.1007/978-3-319-56617-7_10.

[CGW15] J. Chen, R. Gay, and H. Wee. “Improved Dual System ABE in Prime-
Order Groups via Predicate Encodings.” In: eurocrypt. Ed. by E.
Oswald and M. Fischlin. Vol. 9057.II. LNCS. Springer, 2015, pp. 595–
624. doi: 10.1007/978-3-662-46803-6_20.

[Cha07] M. Chase. “Multi-authority Attribute Based Encryption.” In: Theory
of Cryptography (tcc). Ed. by S. P. Vadhan. Vol. 4392. LNCS. Springer,
2007, pp. 515–534. doi: 10.1007/978-3-540-70936-7_28.

[CHL⁺15] J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. “Cryptanalysis
of the Multilinear Map over the Integers.” In: eurocrypt. Ed. by E.
Oswald and M. Fischlin. Vol. 9056.I. LNCS. Springer, 2015, pp. 3–12.
doi: 10.1007/978-3-662-46800-5_1.

[CLL⁺16] J.-S. Coron, M. S. Lee, T. Lepoint, and M. Tibouchi. “Cryptanalysis of
GGH15 Multilinear Maps.” In: crypto. Ed. by M. Robshaw and J. Katz.
Vol. 9815.II. LNCS. Springer, 2016, pp. 607–628. doi: 10.1007/978-3-
662-53008-5_21.

[CLO⁺06] S. H.Conrad, R. J. LeClaire, G. P.O’Reilly, andH.Uzunalioglu. “Critical
national infrastructure reliability modeling and analysis.” In: Bell Labs
Technical Journal 11.3 (2006). Ed. by C. Bahr, pp. 57–71. doi: 10.1002/
bltj.20178.

[CLW⁺16] N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu. “Practical Order-
Revealing Encryption with Limited Leakage.” In: Fast Software Encryp-
tion (fse). Ed. by T. Peyrin. Vol. 9783. LNCS. Springer, 2016, pp. 474–
493. doi: 10.1007/978-3-662-52993-5_24.

139

https://nyti.ms/2k4BTyC
https://nyti.ms/2k4BTyC
https://doi.org/10.1145/1653662.1653678
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1145/3139550.3139554
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1002/bltj.20178
https://doi.org/10.1002/bltj.20178
https://doi.org/10.1007/978-3-662-52993-5_24

Bibliography

[CMZ14] M. Chase, S. Meiklejohn, and G. Zaverucha. “Algebraic MACs and
Keyed-Verification Anonymous Credentials.” In: Computer and Com-
munications Security (ccs). Ed. by P. Ning et al. ACM, 2014, pp. 1205–
1216. doi: 10.1145/2660267.2660328.

[CW13] J. Chen and H. Wee. “Fully, (Almost) Tightly Secure IBE and Dual Sys-
temGroups.” In: crypto. Ed. by R. Canetti and J. A. Garay. Vol. 8043.II.
LNCS. Springer, 2013, pp. 435–460. doi: 10.1007/978-3-642-40084-
1_25.

[CW14] J. Chen and H. Wee. Dual System Groups and its Applications – Compact
HIBE and More. Tech. rep. Apr. 2014. iacr: 2014/265.

[DAB⁺02] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer. “Re-
claiming space from duplicate files in a serverless distributed file
system.” In: International Conference on Distributed Computing Systems
(icdcs). Ed. by L. E. T. Rodrigues et al. IEEE, 2002, pp. 617–624. doi:
10.1109/ICDCS.2002.1022312.

[DCW13] C. Dong, L. Chen, and Z. Wen. “When Private Set Intersection Meets
Big Data: An Efficient and Scalable Protocol.” In: Computer & Commu-
nications Security (ccs). Ed. by A.-R. Sadeghi et al. ACM, 2013, pp. 789–
800. doi: 10.1145/2508859.2516701.

[DK11] B. Ding and A. C. König. “Fast Set Intersection in Memory.” In: Pro-
ceedings of the VLDB Endowment (pvldb) 4.4 (Jan. 2011). Ed. by H. V.
Jagadish and N. Koudas, pp. 255–266. doi: 10.14778/1938545.1938550.

[DOT18] P. Datta, T. Okamoto, and J. Tomida. “Full-Hiding (Unbounded)Multi-
input Inner Product Functional Encryption from the 𝑘-Linear Assump-
tion.” In: Public Key Cryptography (pkc). Ed. by M. Abdalla and R. Da-
hab. Vol. 10770.II. LNCS. Springer, 2018, pp. 245–277. doi: 10.1007/978-
3-319-76581-5_9.

[DS09] M. Dunn-Cavelty andM. Suter. “Public–Private Partnerships are no sil-
ver bullet: An expanded governance model for Critical Infrastructure
Protection.” In: International Journal of Critical Infrastructure Protec-
tion 2.4 (2009). Ed. by S. Shenoi, pp. 179–187. doi: 10.1016/j.ijcip.
2009.08.006.

[DT10] E. De Cristofaro and G. Tsudik. “Practical Private Set Intersection
Protocols with Linear Complexity.” In: Financial Cryptography and
Data Security (fc). Ed. by R. Sion. Vol. 6052. LNCS. Springer, 2010,
pp. 143–159. doi: 10.1007/978-3-642-14577-3_13.

[EULex] “Directive (EU) 2016/1148 of the European Parliament and of the
Council of 6 July 2016 concerning measures for a high common level
of security of network and information systems across the Union.”
Official Journal of the European Union (oj) L194, July 2016, pp. 1–30.
eli: 2016/1148.

140

https://doi.org/10.1145/2660267.2660328
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/978-3-642-40084-1_25
https://eprint.iacr.org/2014/265
https://doi.org/10.1109/ICDCS.2002.1022312
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.14778/1938545.1938550
https://doi.org/10.1007/978-3-319-76581-5_9
https://doi.org/10.1007/978-3-319-76581-5_9
https://doi.org/10.1016/j.ijcip.2009.08.006
https://doi.org/10.1016/j.ijcip.2009.08.006
https://doi.org/10.1007/978-3-642-14577-3_13
https://data.europa.eu/eli/dir/2016/1148/oj/

Other References

[FM19] G. Fotiadis and C. Martindale. Optimal TNFS-secure pairings on elliptic
curves with composite embedding degree. Tech. rep. May 2019. iacr: 2019/
555.

[FNP04] M. J. Freedman, K. Nissim, and B. Pinkas. “Efficient Private Matching
and Set Intersection.” In: eurocrypt. Ed. by C. Cachin and J. L. Ca-
menisch. Vol. 3027. LNCS. Springer, 2004, pp. 1–19. doi: 10.1007/978-
3-540-24676-3_1.

[Fre10] D.M. Freeman. “Converting Pairing-Based Cryptosystems from
Composite-Order Groups to Prime-Order Groups.” In: eurocrypt.
Ed. by H. Gilbert. Vol. 6110. LNCS. Springer, 2010, pp. 44–61. doi:
10.1007/978-3-642-13190-5_3.

[GGG⁺14] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A.
Sahai, E. Shi, and H.-S. Zhou. “Multi-input Functional Encryption.”
In: eurocrypt. Ed. by P.Q. Nguyen and E. Oswald. Vol. 8441. LNCS.
Springer, 2014, pp. 578–602. doi: 10.1007/978-3-642-55220-5_32.

[GGH⁺13a] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters.
“Candidate Indistinguishability Obfuscation and Functional Encryp-
tion for all Circuits.” In: Foundations of Computer Science (focs). Ed. by
O. Reingold. 2013, pp. 40–49. doi: 10.1109/FOCS.2013.13.

[GGH⁺13b] S. Garg, C. Gentry, S. Halevi, A. Sahai, and B. Waters. “Attribute-Based
Encryption for Circuits from Multilinear Maps.” In: crypto. Ed. by
R. Canetti and J. A. Garay. Vol. 8043.II. LNCS. Springer, 2013, pp. 479–
499. doi: 10.1007/978-3-642-40084-1_27.

[GH11] D. Galindo and J.-H. Hoepman. “Non-interactive Distributed Encryp-
tion: A New Primitive for Revocable Privacy.” In:Workshop on Privacy
in the Electronic Society (wpes). Ed. by Y. Chen and J. Vaidya. ACM,
2011, pp. 81–92. doi: 10.1145/2046556.2046567.

[GKL⁺13] S. D. Gordon, J. Katz, F.-H. Liu, E. Shi, and H.-S. Zhou. Multi-Input
Functional Encryption. Tech. rep. Nov. 2013. iacr: 2013/774.

[GKP⁺13] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zel-
dovich. “How to Run TuringMachines on EncryptedData.” In: crypto.
Ed. by R. Canetti and J. A. Garay. Vol. 8043.II. LNCS. Springer, 2013,
pp. 536–553. doi: 10.1007/978-3-642-40084-1_30.

[GM84] S. Goldwasser and S. Micali. “Probabilistic Encryption.” In: Journal
of Computer and System Sciences 28.2 (1984). Ed. by H. R. A. Lewis,
pp. 270–299. doi: 10.1016/0022-0000(84)90070-9.

[Goo13] D. Goodin. Crypto weakness in Web comment system exposes hate-
mongering politicians. Journalists exploit weakness in Gravatar to identify
extremist forum members. Condé Nast. Dec. 11, 2013. url: https://
arstechnica.com/?post_type=post&p=383933 (visited on 2019-05-01).

141

https://eprint.iacr.org/2019/555
https://eprint.iacr.org/2019/555
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/978-3-642-40084-1_27
https://doi.org/10.1145/2046556.2046567
https://eprint.iacr.org/2013/774
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1016/0022-0000(84)90070-9
https://arstechnica.com/?post_type=post&p=383933
https://arstechnica.com/?post_type=post&p=383933

Bibliography

[GP09] P. Golle and K. Partridge. “On the Anonymity of Home/Work Location
Pairs.” In: pervasive. Ed. by H. Tokuda et al. Vol. 5538. LNCS. Springer,
2009, pp. 390–397. doi: 10.1007/978-3-642-01516-8_26.

[GPS08] S. D. Galbraith, K. G. Paterson, and N. P. Smart. “Pairings for cryp-
tographers.” In: Discrete Applied Mathematics 156.16 (2008). Ed. by
M. I. González Vasco and R. Steinwandt. Applications of Algebra to
Cryptography, pp. 3113–3121. doi: 10.1016/j.dam.2007.12.010.

[HHS⁺17] S. Halevi, T. Halevi, V. Shoup, and N. Stephens-Davidowitz. “Imple-
menting BP-Obfuscation Using Graph-Induced Encoding.” In: Com-
puter and Communications Security (ccs). Ed. by B. Thuraisingham et al.
ACM, 2017, pp. 783–798. doi: 10.1145/3133956.3133976.

[IKN⁺19] M. Ion, B. Kreuter, A. E. Nergiz, S. Patel, M. Raykova, S. Saxena, K. Seth,
D. Shanahan, and M. Yung. On Deploying Secure Computing Commer-
cially: Private Intersection-Sum Protocols and their Business Applications.
Tech. rep. June 2019. iacr: 2019/723.

[IRTPA] “Intelligence Reform and Terrorism Prevention Act of 2004,” Dec.
2004. url: https : / / www . gpo . gov / fdsys / pkg / STATUTE - 118 / pdf /
STATUTE-118-Pg3638.pdf (visited on 2019-03-26).

[JL10] S. Jarecki and X. Liu. “Fast Secure Computation of Set Intersection.”
In: Security and Cryptography for Networks (scn). Ed. by J. A. Garay
and R. De Prisco. Vol. 6280. LNCS. Springer, 2010, pp. 418–435. doi:
10.1007/978-3-642-15317-4_26.

[Ker11] F. Kerschbaum. “Public-Key Encrypted Bloom Filters with Applica-
tions to Supply Chain Integrity.” In: Data and Applications Security and
Privacy (dbsec). Ed. by Y. Li. Vol. 6818. LNCS. Springer, 2011, pp. 60–
75. doi: 10.1007/978-3-642-22348-8_7.

[Ker12a] F. Kerschbaum. “Collusion-resistant Outsourcing of Private Set Inter-
section.” In: Symposium on Applied Computing (sac). Ed. by S. Ossowski
and P. Lecca. ACM, 2012, pp. 1451–1456. doi: 10.1145/2245276.2232008.

[Ker12b] F. Kerschbaum. “Outsourced Private Set Intersection Using Homo-
morphic Encryption.” In: Information, Computer and Communications
Security (asiaccs). Ed. by H. Y. Youm and Y. Won. ACM, 2012. doi:
10.1145/2414456.2414506.

[KLM⁺18] S. Kim, K. Lewi, A. Mandal, H. Montgomery, A. Roy, and D. J. Wu.
“Function-Hiding Inner Product Encryption Is Practical.” In: Security
and Cryptography for Networks (scn). Ed. by D. Catalano and R. De
Prisco. Vol. 11035. LNCS. Springer, 2018, pp. 544–562. doi: 10.1007/978-
3-319-98113-0_29.

[KMR⁺14] S. Kamara, P. Mohassel, M. Raykova, and S. Sadeghian. “Scaling Private
Set Intersection to Billion-Element Sets.” In: Financial Cryptography
and Data Security (fc). Ed. by N. Christin and R. Safavi-Naini. Vol. 8437.
LNCS. Springer, 2014, pp. 195–215. doi: 10.1007/978-3-662-45472-
5_13.

142

https://doi.org/10.1007/978-3-642-01516-8_26
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1145/3133956.3133976
https://eprint.iacr.org/2019/723
https://www.gpo.gov/fdsys/pkg/STATUTE-118/pdf/STATUTE-118-Pg3638.pdf
https://www.gpo.gov/fdsys/pkg/STATUTE-118/pdf/STATUTE-118-Pg3638.pdf
https://doi.org/10.1007/978-3-642-15317-4_26
https://doi.org/10.1007/978-3-642-22348-8_7
https://doi.org/10.1145/2245276.2232008
https://doi.org/10.1145/2414456.2414506
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-662-45472-5_13

Other References

[KS05] L. Kissner and D. Song. “Privacy-Preserving Set Operations.” In:
crypto. Ed. by V. Shoup. Vol. 3621. LNCS. Springer, 2005, pp. 241–257.
doi: 10.1007/11535218_15.

[KSG⁺16] J. Kim, W. Susilo, F. Guo, and M.H. Au. “A Tag Based Encoding: An
Efficient Encoding for Predicate Encryption in Prime Order Groups.”
In: Security and Cryptography for Networks (scn). Ed. by V. Zikas and R.
De Prisco. Vol. 9841. LNCS. Springer, 2016, pp. 3–22. doi: 10.1007/978-
3-319-44618-9_1.

[KSW08] J. Katz, A. Sahai, and B. Waters. “Predicate Encryption Supporting
Disjunctions, Polynomial Equations, and Inner Products.” In: euro-
crypt. Ed. by N. Smart. Vol. 4965. LNCS. Springer, 2008, pp. 146–162.
doi: 10.1007/978-3-540-78967-3_9.

[LCH⁺11] Z. Liu, Z. Cao, Q. Huang, D. S. Wong, and T.H. Yuen. “Fully Secure
Multi-authority Ciphertext-Policy Attribute-Based Encryption with-
out Random Oracles.” In: European Symposium on Research in Com-
puter Security (esorics). Ed. by V. Atluri and C. Diaz. Vol. 6879. LNCS.
Springer, 2011, pp. 278–297. doi: 10.1007/978-3-642-23822-2_16.

[Lew12] A. Lewko. “Tools for Simulating Features of Composite Order Bi-
linear Groups in the Prime Order Setting.” In: eurocrypt. Ed. by D.
Pointcheval and T. Johansson. Vol. 7237. LNCS. Springer, 2012, pp. 318–
335. doi: 10.1007/978-3-642-29011-4_20.

[LHK14] W. Lueks, J.-H. Hoepman, and K. Kursawe. “Forward-Secure Distrib-
uted Encryption.” In:Privacy Enhancing Technologies Symposium (pets).
Ed. by E. De Cristofaro and S. J. Murdoch. Vol. 8555. LNCS. Springer,
2014, pp. 123–142. doi: 10.1007/978-3-319-08506-7_7.

[LK15a] E. Luiijf and A. Kernkamp. Sharing Cyber Security Information. Good
Practice Stemming from the Dutch Public-Private-Participation Approach.
Tech. rep.Mar. 2015. url: https://publications.tno.nl/publication/
34616508/oLyfG9/luiijf-2015-sharing.pdf (visited on 2019-04-02).

[LK15b] E. Luiijf and M. Klaver. “On the Sharing of Cyber Security Informa-
tion.” In: International Conference on Critical Infrastructure Protection
(iccip). Ed. by M. Rice and S. Shenoi. Vol. 466. IFIPAICT. Springer,
2015, pp. 29–46. doi: 10.1007/978-3-319-26567-4_3.

[LMA⁺16] K. Lewi, A. J. Malozemoff, D. Apon, B. Carmer, A. Foltzer, D. Wagner,
D.W. Archer, D. Boneh, J. Katz, and M. Raykova. “5Gen: A Frame-
work for Prototyping Applications Using Multilinear Maps and Matrix
Branching Programs.” In: Conference on Computer and Communications
Security (ccs). ACM, 2016, pp. 981–992. doi: 10.1145/2976749.2978376.

[LNK⁺09] E. Luiijf, A. Nieuwenhuijs, M. Klaver, M. van Eeten, and E. Cruz. “Em-
pirical Findings on Critical Infrastructure Dependencies in Europe.”
In: Critical Information Infrastructure Security (critis). Ed. by R. Setola
and S. Geretshuber. Vol. 5508. LNCS. Springer, 2009, pp. 302–310. doi:
10.1007/978-3-642-03552-4_28.

143

https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-319-44618-9_1
https://doi.org/10.1007/978-3-319-44618-9_1
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-642-23822-2_16
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-319-08506-7_7
https://publications.tno.nl/publication/34616508/oLyfG9/luiijf-2015-sharing.pdf
https://publications.tno.nl/publication/34616508/oLyfG9/luiijf-2015-sharing.pdf
https://doi.org/10.1007/978-3-319-26567-4_3
https://doi.org/10.1145/2976749.2978376
https://doi.org/10.1007/978-3-642-03552-4_28

Bibliography

[LNZ⁺14] F. Liu, W. K. Ng, W. Zhang, D.H. Giang, and S. Han. “Encrypted Set
Intersection Protocol for Outsourced Datasets.” In: International Con-
ference on Cloud Engineering (ic2e). Ed. by A. Bestavros et al. IEEE,
2014, pp. 135–140. doi: 10.1109/IC2E.2014.18.

[LOS⁺10] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. “Fully
Secure Functional Encryption: Attribute-Based Encryption and (Hier-
archical) Inner Product Encryption.” In: eurocrypt. Ed. by H. Gilbert.
Vol. 6110. LNCS. Springer, 2010, pp. 62–91. doi: 10.1007/978-3-642-
13190-5_4.

[LW10] A. Lewko and B. Waters. “New Techniques for Dual System Encryp-
tion and Fully Secure HIBE with Short Ciphertexts.” In: Theory of
Cryptography (tcc). Ed. by D. Micciancio. Vol. 5978. LNCS. Springer,
2010, pp. 455–479. doi: 10.1007/978-3-642-11799-2_27.

[LW11] A. Lewko and B.Waters. “Decentralizing Attribute-Based Encryption.”
In: eurocrypt. Ed. by K. G. Paterson. Vol. 6632. LNCS. Springer, 2011,
pp. 568–588. doi: 10.1007/978-3-642-20465-4_31.

[LW12] A. Lewko and B. Waters. “New Proof Methods for Attribute-Based
Encryption: Achieving Full Security through Selective Techniques.”
In: crypto. Ed. by R. Safavi-Naini and R. Canetti. Vol. 7417. LNCS.
Springer, 2012, pp. 180–198. doi: 10.1007/978-3-642-32009-5_12.

[LW16] K. Lewi and D. J. Wu. “Order-Revealing Encryption: New Construc-
tions, Applications, and Lower Bounds.” In: Conference on Computer
and Communications Security (ccs). Ed. by E. R. Weippl et al. ACM,
2016. doi: 10.1145/2976749.2978376.

[Mea86] C. Meadows. “A More Efficient Cryptographic Matchmaking Protocol
for Use in the Absence of a Continuously Available Third Party.”
In: Security and Privacy (s&p). Ed. by C. Weissman et al. IEEE, 1986,
pp. 134–134. doi: 10.1109/SP.1986.10022.

[MJ18] Y. Michalevsky and M. Joye. “Decentralized Policy-Hiding ABE with
Receiver Privacy.” In: European Symposium on Research in Computer
Security (esorics). Ed. by J. Lopez et al. Vol. 11099.II. LNCS. Springer,
2018, pp. 548–567. doi: 10.1007/978-3-319-98989-1_27.

[MKE09] S. Müller, S. Katzenbeisser, and C. Eckert. “Distributed Attribute-
Based Encryption.” In: Information Security and Cryptology (icisc). Ed.
by P. J. Lee and J. H. Cheon. Vol. 5461. LNCS. Springer, 2009, pp. 20–36.
doi: 10.1007/978-3-642-00730-9_2.

[MNT01] A. Miyaji, M. Nakabayashi, and S. Takano. “Characterization of Elliptic
Curve Traces Under FR-Reduction.” In: International Conference on
Information Security and Cryptology (icisc). Ed. by D. Won. Vol. 2015.
LNCS. Springer, 2001, pp. 90–108. doi: 10.1007/3-540-45247-8_8.

144

https://doi.org/10.1109/IC2E.2014.18
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1145/2976749.2978376
https://doi.org/10.1109/SP.1986.10022
https://doi.org/10.1007/978-3-319-98989-1_27
https://doi.org/10.1007/978-3-642-00730-9_2
https://doi.org/10.1007/3-540-45247-8_8

Other References

[MS02] J. D. Moteff and G.M. Stevens. Critical Infrastructure Information Dis-
closure andHomeland Security. Report. Library of CongressWashington
DC Congressional Research Service, Aug. 31, 2002. 23 pp. url: http:
//www.dtic.mil/docs/citations/ADA467310 (visited on 2017-11-01).

[NR04] M. Naor and O. Reingold. “Number-theoretic Constructions of Effi-
cient Pseudo-random Functions.” In: Journal of the ACM (jacm) 51.2
(Mar. 2004). Ed. by V. Vianu, pp. 231–262. doi: 10.1145/972639.972643.

[ONe10] A. O’Neill. Definitional Issues in Functional Encryption. Tech. rep. Mar.
2011 (Oct. 30, 2010). iacr: 2010/556.

[OT13] T. Okamoto and K. Takashima. “Decentralized Attribute-Based Signa-
tures.” In: Public-Key Cryptography (pkc). Ed. by K. Kurosawa and G.
Hanaoka. Vol. 7778. LNCS. Springer, 2013, pp. 125–142. doi: 10.1007/
978-3-642-36362-7_9.

[PCC97] President’s Commission on Critical Infrastructure Protection. Critical
Foundations: Protecting America’s Infrastructures. Report. Oct. 1997.
url: https : / / www . fas . org / sgp / library / pccip . pdf (visited on
2016-05-01).

[PR12] O. Pandey and Y. Rouselakis. “Property Preserving Symmetric En-
cryption.” In: eurocrypt. Ed. by D. Pointcheval and T. Johansson.
Vol. 7237. LNCS. Springer, 2012, pp. 375–391. doi: 10.1007/978-3-642-
29011-4_23.

[PSZ14] B. Pinkas, T. Schneider, andM. Zohner. “Faster Private Set Intersection
Based on OT Extension.” In: usenix security. Ed. by K. Fu and J. Jung.
USENIXAssociation, 2014, pp. 797–812. url: https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/
pinkas (visited on 2019-01-30).

[RW15] Y. Rouselakis and B. Waters. “Efficient Statically-Secure Large-
Universe Multi-Authority Attribute-Based Encryption.” In: Financial
Cryptography and Data Security (fc). Ed. by R. Böhme and T. Okamoto.
Springer, 2015, pp. 315–332. doi: 10.1007/978-3-662-47854-7_19.

[Sch80] J. T. Schwartz. “Fast Probabilistic Algorithms for Verification of Poly-
nomial Identities.” In: Journal of the ACM (jacm) 27.4 (Oct. 1980).
Ed. by M. R. Garey, pp. 701–717. doi: 10.1145/322217.322225.

[SCR⁺11] E. Shi, T. H. Chan, E. G. Rieffel, R. Chow, and D. Song. “Privacy-
Preserving Aggregation of Time-Series Data.” In: Network and Distrib-
uted System Security Symposium (ndss). The Internet Society, 2011. url:
https://www.ndss-symposium.org/ndss2011/privacy-preserving-
aggregation-of-time-series-data/ (visited on 2019-01-30).

[Sha07] H. Shacham. A Cramer-Shoup Encryption Scheme from the Linear As-
sumption and from Progressively Weaker Linear Variants. Tech. rep. Apr.
2009 (Feb. 25, 2007). iacr: 2007/074.

145

http://www.dtic.mil/docs/citations/ADA467310
http://www.dtic.mil/docs/citations/ADA467310
https://doi.org/10.1145/972639.972643
https://eprint.iacr.org/2010/556
https://doi.org/10.1007/978-3-642-36362-7_9
https://doi.org/10.1007/978-3-642-36362-7_9
https://www.fas.org/sgp/library/pccip.pdf
https://doi.org/10.1007/978-3-642-29011-4_23
https://doi.org/10.1007/978-3-642-29011-4_23
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas
https://doi.org/10.1007/978-3-662-47854-7_19
https://doi.org/10.1145/322217.322225
https://www.ndss-symposium.org/ndss2011/privacy-preserving-aggregation-of-time-series-data/
https://www.ndss-symposium.org/ndss2011/privacy-preserving-aggregation-of-time-series-data/
https://eprint.iacr.org/2007/074

Bibliography

[Sha79] A. Shamir. “How to Share a Secret.” In: Communications of the ACM
(commun. acm) 22.11 (Nov. 1979). Ed. by R. L. Rivest, pp. 612–613. doi:
10.1145/359168.359176.

[Sho97] V. Shoup. “Lower Bounds for Discrete Logarithms and Related Prob-
lems.” In: eurocrypt. Ed. by W. Fumy. Vol. 1233. LNCS. Springer, 1997,
pp. 256–266. doi: 10.1007/3-540-69053-0_18.

[Sma01] N. P. Smart. “The Exact Security of ECIES in the Generic Group
Model.” In: IMA International Conference on Cryptography and Cod-
ing (imacc). Ed. by B. Honary. Vol. 2260. LNCS. Springer, 2001, pp. 73–
84. doi: 10.1007/3-540-45325-3_8.

[SSF16] F. Skopik, G. Settanni, and R. Fiedler. “A problem shared is a problem
halved: A survey on the dimensions of collective cyber defense through
security information sharing.” In: Computers & Security 60 (July 2016).
Ed. by E. H. Spafford, pp. 154–176. doi: 10.1016/j.cose.2016.04.003.

[SSW09] E. Shen, E. Shi, and B. Waters. “Predicate Privacy in Encryption Sys-
tems.” In: Theory of Cryptography (tcc). Ed. by O. Reingold. Vol. 5444.
LNCS. Springer, 2009, pp. 457–473. doi: 10.1007/978-3-642-00457-
5_27.

[SW05] A. Sahai and B. Waters. “Fuzzy Identity-Based Encryption.” In: euro-
crypt. Ed. by R. Cramer. Vol. 3494. LNCS. Springer, 2005, pp. 457–473.
doi: 10.1007/11426639_27.

[Tro14] J. K. Trotter. Public NYC Taxicab Database Lets You See How Celebrities
Tip. GawkerMediaGroup. Oct. 23, 2014. url: https://gawker.com/the-
public-nyc-taxicab-database-that-accidentally-track-1646724546
(visited on 2019-05-01).

[Wat09] B. Waters. “Dual System Encryption: Realizing Fully Secure IBE
and HIBE under Simple Assumptions.” In: crypto. Ed. by S. Halevi.
Vol. 5677. LNCS. Springer, 2009, pp. 619–636. doi: 10.1007/978-3-642-
03356-8_36.

[Wat12] B.Waters. “Functional Encryption for Regular Languages.” In: crypto.
Ed. by R. Safavi-Naini and R. Canetti. Vol. 7417. LNCS. Springer, 2012,
pp. 218–235. doi: 10.1007/978-3-642-32009-5_14.

[Wee14] H.Wee. “Dual System Encryption via Predicate Encodings.” In: Theory
of Cryptography (tcc). Ed. by Y. Lindell. Vol. 8349. LNCS. Springer,
2014, pp. 616–637. doi: 10.1007/978-3-642-54242-8_26.

[YTH⁺10] G. Yang, C.H. Tan, Q. Huang, and D. S. Wong. “Probabilistic Public
Key Encryption with Equality Test.” In: Cryptographers’ Track at the
RSA Conference (ct-rsa). Ed. by J. Pieprzyk. Vol. 5985. LNCS. Springer,
2010, pp. 119–131. doi: 10.1007/978-3-642-11925-5_9.

146

https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-45325-3_8
https://doi.org/10.1016/j.cose.2016.04.003
https://doi.org/10.1007/978-3-642-00457-5_27
https://doi.org/10.1007/978-3-642-00457-5_27
https://doi.org/10.1007/11426639_27
https://gawker.com/the-public-nyc-taxicab-database-that-accidentally-track-1646724546
https://gawker.com/the-public-nyc-taxicab-database-that-accidentally-track-1646724546
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-32009-5_14
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-11925-5_9

Other References

[ZX15] Q. Zheng and S. Xu. “Verifiable Delegated Set Intersection Operations
on Outsourced Encrypted Data.” In: International Conference on Cloud
Engineering (ic2e). Ed. by K. S. Candan and K. D. Ryu. IEEE, 2015,
pp. 175–184. doi: 10.1109/IC2E.2015.38.

147

https://doi.org/10.1109/IC2E.2015.38

Bibliography

148

.

Colophon
. .

Cover design and lay-out: Tim van de Kamp
Text typefaces: Freight Text Pro, Mr Eaves XL Sans,

Gemeli Mono
Math typefaces: Latin Modern Math, XITS Math,

TeX Gyre Chorus, TeX Gyre Pagella Math
Typesetting software: LuaLATEX, biber
Paper: 90 gsm wood-free offset
Printing: Ipskamp Printing
Publisher: University of Twente

Digital Society Institute (dsi)
P.O. Box 217
7500 AE Enschede

. .

The printing of this dissertation was financially supported by the Services
and Cybersecurity (scs) research department of the University of Twente.

149

150

	Abstract
	Abstract (Dutch)
	Acknowledgments
	Introduction
	Controlled Data Sharing
	Controlled Data Sharing By Fine-Grained Data Protection
	Research Objective
	Dissertation Outline
	Contribution

	Preliminaries
	Common Primitives
	Complexity Assumptions
	Definitions of Functional Encryption Schemes
	Security Definitions

	Set Intersections: Two-Client and Multi-client Constructions
	Introduction
	Preliminaries
	Related Work
	Multi-client Functional Encryption for Set Operations
	Security
	Two-Client Constructions for Set Intersections
	Multi-client Constructions for Set Intersections
	Evaluation
	Conclusion

	Equality Tests: Vector Equality With Optional Wildcards
	Introduction
	Multi-client Predicate-Only Encryption
	Our Construction
	Security Proofs
	Implementation and Evaluation
	Conclusion

	General Predicates: Multi-authority Predicate Encryption
	Introduction
	Preliminaries
	Related Work
	Multi-authority Admissible Pair Encoding Scheme
	Conversion from Encoding to Encryption
	Security of the Conversion Algorithm
	Multi-authority Pair Encoding Examples
	Conclusion

	Directions for Extending the Work
	Towards More Efficient Corruption-Resistant MC-SI
	Towards Multi-authority Predicate Encryption in Prime-Order Groups

	Conclusions
	Ways of Achieving Special-Purpose MC-FE
	Efficiency of MC-FE

